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Abstract—Existing deep clustering methods leverage con-
trastive or non-contrastive learning to facilitate downstream
tasks. Most contrastive-based methods typically learn represen-
tations by comparing positive pairs (two views of the same
sample) against negative pairs (views of different samples).
However, we spot that this hard treatment of samples inade-
quately models inter-sample relationships, leading to class col-
lision and degraded clustering performance. In this paper, we
propose a soft neighbor supported contrastive clustering method
to address this issue. Specifically, we propose the perception
radius concept to quantify similarity confidence between a
sample and its neighbors. Building on this insight, we design
a two-level soft neighbor loss that captures both local and
global neighborhood relationships. Additionally, a cluster-level
loss enforces compact and well-separated cluster distributions.
Finally, we introduce a pseudo-label refinement strategy to
mitigate false negative samples. Extensive experiments on bench-
mark datasets demonstrate the superiority of our method. The
code is available at https://github.com/DuannYu/soft-neighbors–
supported-clustering.

Index Terms—Deep Clustering, Contrastive Learning, Soft
Neighbors, Unsupervised Learning

I. INTRODUCTION

THE exponential growth of unlabeled data, particularly
visual data, has created an urgent need for unsupervised

grouping techniques. As a fundamental unsupervised learning
method, clustering naturally addresses this challenge through
its intrinsic grouping mechanism. Consequently, diverse clus-
tering methods have emerged from various perspectives, in-
cluding K-means [1], fuzzy c-means [2], spectral clustering,
subspace clustering [3], affinity propagation [4], non-negative
matrix factorization [5], [6], Gaussian mixture [7], and other
graph-based methods [8], [9].

From the data acquisition perspective, clustering has been
extended to multi-view settings, where cluster assignments are
made by integrating information from different views of the
same data [10], [11]. Recent studies have explored more chal-
lenging scenarios involving heterogeneous data across views.
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Fig. 1. Illustration of three contrastive clustering strategies. For a current
sample, TCL [22] only considers its augmentation as positive sample that is
also the nearest neighbor. SCAN [23] lets its several nearest neighbors as
positive ones. In this paper, our basic idea is that we regard neighbors as soft
neighbors, which are partialy correlated to the current sample, and contribute
to contrastive learning limitly.

A typical example is Electronic Health Records (EHR), com-
prising both structured demographic attributes (e.g., age, gen-
der) and unstructured diagnostic code sets. This inherent het-
erogeneity between single-valued attributes and set-valued at-
tributes presents significant challenges for conventional multi-
view clustering methods. To overcome this limitation, Zhong
et al. [12], [13] developed a novel clustering method that
effectively handles mixed demographic and diagnostic code
data. However, these conventional methods mainly operate
on low-dimensional or raw features and lack representation
learning capability, leading to suboptimal performance.

In recent years, deep learning has gained considerable
attention owing to its powerful representation learning ca-
pability. Numerous deep clustering methods, which integrate
deep learning with clustering, have been developed [14]–
[18]. These methods non-linearly transform data into a latent
feature space, thereby enhancing cluster analysis performance.
Most deep clustering methods typically comprise two key
components: representation learning and cluster assignment.
Among the pioneering deep clustering methods, Xie et al.
[19] introduced Deep Embedded Clustering (DEC), which
employs a KL divergence-based objective. Building upon
DEC, IDEC [20] jointly optimizes feature representation and
cluster assignment while preserving local structures. Ji et
al. [21] developed the Invariant Information Clustering (IIC)
method, which maximizes mutual information between images
and their augmented versions.

Nowadays, contrastive learning has significantly improved
the performances of unsupervised learning. Motivated by this,
several contrastive-based clustering methods have emerged,
achieving state-of-the-art performance [23]–[27]. For example,
Li et al. [22] jointly learned the feature and cluster assignment
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at the same time, without any explicit clustering process.
Another contrastive-based method is called SCAN [23], which
uses the learned representations from a pre-text task, and
finally obtained cluster assignment by using nearest neighbors.
On the other hand, Huang [28] divided contrastive learning
into two steps: alignment and uniformity. The alignment step
can make positive pairs closer. The Uniformity step encourages
negative pairs to uniformly scatter on the unit hyper-sphere as
much as possible, to achieve the purpose of pushing away
negative pairs. Despite their success, it is inevitable that the
samples belonging to the same class maybe wrongly pushed
away, leading to sub-optimal performance.

To address these limitations, we propose Soft Neighbor-
Supported Contrastive Clustering, a novel method that in-
telligently incorporates soft neighborhood relationships into
contrastive learning. As illustrated in Fig. 1, our method
introduces adaptive soft positive neighbors for more robust
contrastive loss computation. Specifically, we develop:

• A neighbor positiveness measurement strategy that dy-
namically evaluates sample relationships, effectively mit-
igating false negative effects.

• A consistency loss that simultaneously enhances intra-
class compactness and inter-class separation.

• A pseudo-label guided contrastive module that progres-
sively refines neighbor selection through self-supervised
learning

The complete framework generates cluster assignments end-
to-end upon convergence. Our key contributions include:

• We propose a new clustering method called soft neighbors
supported contrastive clustering, which could consider
positive and negative pairs more properly, and learn more
cluster-favorable features.

• We also design a boosting strategy to improve clustering
performance based on pseudo-labels. Experimental re-
sults show that these strategy could fine-tune our models
and enhance clustering results.

• Extensive experimental results on several benchmark
datasets demonstrate that our proposed method outper-
forms the existing state-of-the-art methods by a signifi-
cant margin.

The rest of this paper is organized as follows: Section II
briefly review the related works. We discuss proposed method
and its optimization in Section III. Experimental results are
reported in Section IV. Finally, we conclude the whole paper
in Section V.

II. RELATED WORKS

A. Contrastive Learning

Contrastive learning, as a metric learning method, has been
successfully applied in unsupervised, semi-supervised and
supervised learning tasks [29]–[31]. It firstly builds positive
and negative pairs for each sample, then maps them into
feature spaces, maximizing similarities between positive pairs
and minimizing the negative ones. Hence, the selection of
positive/negative pairs is crucial for contrastive learning. For
example, in SimCLR [32], the positive sample is obtained
through image augmentation, while negatives are randomly

sampled within mini-batches. It has been demonstrated that
larger batch sizes (more negative pairs) can yield better per-
formance. However, excessively large batches leads expensive
storage and computational requirements. To consider more
negative samples, MoCo [33] treats contrastive learning as
a dictionary lookup process, by utilizing an memory bank
and a moving-averaged encoder. On the other hand, to avoid
the side-effects from building negative pairs, BYOL [34]
uses the teacher-student network to replace choosing negative
samples, updating the network in a moving-average manner
and avoiding trivial solutions. Even without using negative
pairs, large batch size, and momentum encoders, SimSiam [35]
still shows that simple siamese networks can learn meaningful
representations.

B. Deep Clustering

In contrast to contrastive learning that treats each sample
as an independent class, deep clustering aims to group similar
samples into the same category. For example, DEC [19] and
IDEC [20], as typical deep clustering methods, use auto-
encoders for representation learnings, apply k-means to initial-
ize cluster centers, and then compute KL divergence to train
networks. Peng et al. [36] proposed a new subspace clustering
method, which solves the drawback of dealing with non-linear
structures. JULE [14] learns CNN for representation learning
and hierarchical clustering in a recurrent manner. DAC [15],
DDC [37] and DCCM [18] alternately optimize the inter-
sample relationships and clustering assignment during training.

Furthermore, contrastive-based clustering methods have
achieved great improvements. Some of them use pretext tasks
learning discriminative features to assist downstream clus-
tering tasks [22], [23], [38]. Others combine representation
learning and clustering assignments together, jointly optimize
networks until convergence, and finally obtain the cluster
predictions [25], [27], [39]–[41]. To name a few, IDFD [27]
proposes to perform both sample discrimination and feature
decorrelation. Peng et al. [22] proposed TCL, which considers
instance-level and cluster-level features together, adopts the
features as a prior, and fine-tunes results in a supervised
manner. SCAN [23] is similar to TCL, but it mainly uses
nearest neighbors to learn cluster-favorable representations.

Moreover, researchers have extended contrastive-based clus-
tering to a multi-view manner. For example, Xu et al. [42]
proposed a framework for multi-view clustering that incorpo-
rates multi-level representation learning. Specifically, it learns
multiple levels of features for each view, including low-level
features, high-level features, and semantic labels in a fusion-
free manner. Pan et al. [43] proposed a Multi-view Contrastive
Graph Clustering (MCGC) to learn a consensus graph by
exploiting not only attribute content but also graph structure
information. Yang et al. propose a novel end-to-end deep
multi-view clustering framework, which has multiple single-
view clustering tasks and one multi-view clustering task.
Therefore, it is employed to harvest the complementary and
consistent information of multi-view data.
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Fig. 2. The overview of our proposed method. In Pre-train Stage, we simply ultilize self-supervised learning to pre-train the encoder (Section III-A). In
Train Stage, We leverage soft neighbors supported contrastive loss to learning cluster-favorable representations and use cluster-level contrastive learning to
obtain the cluster assignments (Section III-B). In Boost Stage, we propose a strategy to generate pseudo labels, and finally fine-tune the cluster predictions
(Section III-C).

III. METHODS

Our method significantly differs from the aforementioned
methods. It incorporates the soft neighbor strategy and con-
siders more potential positive samples in contrastive learning.
It finally obtains cluster-favorable representations and improve
clustering performances.

In sum, our proposed method is mainly consist of following
three parts. As illustrated in Fig. 2, we first pre-train the
encoder in Section III-A with an unsupervised manner. Then
we discuss the soft neighbors supported contrastive clustering
in Section III-B. At last, we provide a boosting strategy based
on pseudo-labels to further improve the clustering performance
in Section III-C.

A. Self-supervised Model Pre-training

As for unsupervised learning task, we empirically know
that the initialization of the network is important to the final
performance. In order to get more cluster-favorable features
from raw images, here we use the contrastive learning to pre-
train the network. Given an input sample xi and its augmented
x′
i from batch B, we obtain their semantic features u and

u′ after encoders respectively, the contrastive loss can be
generally written as:

Lpre−train = − log
exp(sim(ui,u

′
i)/τ)∑2|B|

j=1 1j ̸=i exp(sim(ui,uj)/τ)
, (1)

where τ is a temperature parameter, ui and u′
i are positive

pairs, 1j ̸=i is a conditional funciton, when j ̸= i, it returns

1 and 0 otherwise. The sim(·, ·) is the function for similarity
measurement like cosine similarity. After computing the loss,
we use gradient descent to train the whole networks.

B. Soft Neighbors Supported Contrastive Clustering

Before introducing the proposed method, we first give an
observation that most contrastive learning often regards the
nearest features as the positive sample, and all the others
are negative. It only pulls two samples together and pushes
all the others away. However, this hard negativity often ig-
nores the fact that the sample itself and neighbors potentially
belong to the same category, degrading downstream tasks,
e.g. classification and clustering [44]. A very naive idea is
considering more neighbors as positive pairs. This intuition
is well demonstrated in SCAN. In this method, neighbors are
regarded as either positive or not to contribute to the current
sample. We observe that this is incorrect because the neighbors
are partially correlated for the current sample. In this paper,
we propose a concept of soft positive neighbors based on the
neighbor relationship. And we give an independent confidence
strategy to measure the correlations between sample and its
neighbors. Now, there are two problems before us: a) how
to choose suitable neighbors, and b) how to measure the
positiveness of neighbors.

To choose suitable neighbors, we simply feed all samples
from batches into the encoder to obtain features. Specifically,
let the current sample be xi, we select top-K nearest neighbors
in this feature space, denoted as NN(ui)k,∀k ∈ {1, 2, ...,K}.
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Fig. 3. The key idea of the perception radius. (a) Given a sample xi,
the distance between xi and its nearest sample is defined the perception
radius. Only the distance is ranging from ri to 2ri could be regarded as
soft neighbors. (b) At Local Level, the distance between xi and its nearest
neighbor is called its local perception radius. (c) At Global Level, the distance
between xi and its augmented view is defined as global perception radius.

As for k-th nearest neighbors NN(ui)k, we define its posi-
tiveness confidence sik ∈ [0, 1], guiding the training process
for contrastive learning.

Now, we will discuss how to calculate the positivity con-
fidence of neighbors. Firstly, we give a definition for the
sample’s perception radius.

Definition 1: For a sample xi, the distance to its nearest
neighbor NN(ui)1 is its perception radius, denoted as ri.

Perception radius describes the ability of each sample
to perceive its local information. Fig. 3 shows an intuitive
examples of perception radius. According to Definition 1, we
could define sik ∈ [0, 1] as the positiveness confidence of k-th
nearest neighbors to xi, which can be calculated as

sik = clip(1− dik − ri
ri

, 0, 1), (2)

where dik is the distance between ui and NN(ui)k, and
clip(·) removes the incentive for moving sik outside of the
interval [0, 1]. We could use this value to adaptively adjust
the contribution of neighbors to the current sample during
contrastive learning.

The mined neighbors are very important supervised infor-
mation for the current sample. It directly determines the radius
of the sample and further impact the positiveness. Next, we
will introduce the neighbors’ search and the objective function
from both local and global perspectives.

1) Local Soft Positive Neighbors: For the local-level, we
calculate the pairwise distance of all embeddings in a batch,
to obtain the radius ri of each sample ui and its neighbors
NN(ui)k with positiveness sik. Then we obtain the corre-
sponding clustering assignment pi ∈ RC , NN(pi)j ∈ Rc by
feeding features into the predictor respectively, where C is pre-
defined cluster numbers. Finally, the local-level soft contrastive
loss can be written as

Llocal = − 1

|B|

|B|∑
i=1

K∑
j=1

sij logOij + (1− sij) log (1−Oij),

(3)
where Oij = ⟨pi, NN(pi)j⟩ and ⟨·, ·⟩ is matrix inner product
to measure the similarity.

2) Global-Level Soft Positive Neighbors: The local level
neighbors only consider the pairwise distance in a batch.
According to the previous works [22], [26], an important

observation is that the nearest neighbors of a sample are its
augmented features. Under this context, the true or global
perception radius of any sample is determined by its own
augmentations. Formally, the global perception radius of the
sample is defined as

r′i = ||ui − u′
i||, (4)

where u′
i is the feature encoded from augmented sample

x′
i. Different from local-level loss, we calculate the pairwise

distance between original and augmented samples, and further
obtain the global-level positiveness confidence s′ik ∈ [0, 1] as
the positiveness confidence of k-th nearest neighbors to xi,
which can be written as

s′ik = clip(1− d′
ik − r′i
r′i

, 0, 1), (5)

Based on this, assume that the cluster assignment of x′ is
p′ ∈ RB×C we can obtain pairwise distance p and p′, then
further get global soft contrastive loss

Lglobal = − 1

|B|

|B|∑
i=1

K∑
j=1

s′ij logO
′
ij + (1− s′ij) log (1−O′

ij),

(6)
where O′ ∈ R|B|×|B|, and its (i, j)-th elements is also
⟨pi, NN(pi)j⟩.

3) Cluster-Level Loss: Once obtaining the sample assign-
ment, we need to discuss the relationship between clusters
from another perspective. Different from local and global
levels, it is intuitive to see that each cluster cannot belong to
the same category. In other words, they regard other clusters
as negative samples. Formally, define q = pT ∈ RC×B which
can be seen as a special distribution of clusters. Our task is
to maximize the difference between each cluster. With this
insight, we could write a cluster-level contrastive loss as follow

Lclu cont = − log
exp(sim(qi,q

′
i)/τ)∑2C

j=1 1j ̸=i exp(sim(qi,qj)/τ)
, (7)

where τ is a temperature parameter. Besides above contrastive
loss, we also introduce the widely used entropy loss to avoid
trivial solutions of the model. That is, all samples belong to
the same category. The entropy loss is written as follow:

Lentropy = − 1

|B|

|B|∑
i=1

pi log(pi). (8)

Thus, the cluster-level contrastive loss is finally defined as

Lclu = Lclu cont − ϵLentropy. (9)

Finally, The entire loss at Train Stage can be computed
as

Ltrain = Lclu + α1Llocal + α2Lglobal, (10)

where α1 and α2 are trade-off parameters.
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C. Boost Stage

We experimentally observed that as the training goes on,
the clustering assignments will become clear, which are always
correct. Based on this observation, we select assignments with
high confidence as pseudo-labels to fine-tune our prediction
results. We call the above process as Boost Stage. Specif-
ically, we first select samples whose clustering assignment is
higher than a certain threshold γ as their candidate pseudo-
labels ŷ. Among all these candidate pseudo-labels, we could
leverage following strategy to obtain the final pseudo-labels
y,

yi = TOP(ŷi, σ%), s.t. ŷi ∈ {pi|pi ≥ γ}, (11)

where TOP(pi, σ%) is a selection function that outputs the
largest the most σ% confident samples in each class.

Once the pseudo-labels yi are obtained, we are able to give
a soft contrastive loss between samples in the Boost Stage.
Unlike Eq. (3) and Eq. (6), soft neighbors must be selected
from the same category according to the pseudo-labels. For-
mally, for each sample xi, the boosting soft contrastive loss
is

Lbs = − 1

|B|

|B|∑
i=1

∑
j∈{j|yi=yj}

sij logOij + (1− sij) log (1−Oij).

(12)
At the same time, using the obtained pseudo-labels, we

could train the network in a supervised manner. Given pi be
the i-th sample’s clustering assignment, we could define the
boosting loss as follow,

Lpesudo = − 1

|B|

|B|∑
i=1

CrossEntropy(yi,pi), (13)

where CrossEntropy(·, ·) is cross entropy loss. Finally, the
entire loss in this Boost Stage can be computed as

Lboost = β1Lbs + β2Lpesudo, (14)

where β1 and β2 are trade-off parameters. Finally, the whole
processes of the proposed method are summarized in Algo-
rithm 1.

D. Complexity Analysis and Discussions

This section focuses on analyzing the time complexity per
batch. For clarity, let the batch size be denoted as n. In the
Pre-train Stage, the time complexity of representation
learning is O(n2). In the Train Stage, the complexity of
obtaining the similarity between the sample and the nearest
neighbor is O(n2). Next, the complexity of calculating Llocal

and Lglocal is O(n2). Similarly, the complexity of calculating
Lclu cont is O(C2). Since C ≪ n is generally true, the
complexity of calculating Ltrain is O(n2). In the Boost
Stage, the time complexity of Lboost is O(n2 + n log n).
n log n is for obtaining the most σ% confident samples in
each class.

Finally, assume that the total number of iterations is T , the
time complexity of the proposed method is O(n2T ). It should
be noted that even if the time complexity in each batch is

Algorithm 1 Soft Positive Neighbors Contrastive Clustering
Input : Dataset X; clusters c; Pre-train/Train/Boost iterations,

Pre-train/Train/Boost batch size; cross-entropy hyper-
parameter ϵ, threshold γ; image augmentation strat-
egy.

Output : Clustering assignments.
/* Pre-train Stage */

1 Pre-train the model using loss Lpre−train.
/* Train Stage */

2 for epoch = 1 to MAX EPOCH do
3 Sample a mini-batch from whole datasets.
4 Feed samples into encoders get representations.
5 Compute local and global level soft neighbors loss accord-

ing to Eq. (3), Eq. (6).
6 Compute cluster-level loss by Eq. (9).
7 Compute training loss by Eq. (10).
8 Update network weight to minimize Ltrain.

/* Boost Stage */
9 for epoch = 1 to MAX EPOCH do

10 Sample a mini-batch from whole datasets.
11 Feed samples into encoders get representations and cluster

assignments.
12 Generate pseudo-labels and compute pseudo-labels based

soft neighbors loss according to Eq. (12).
13 Compute supervised loss by Eq. (13).
14 Update network weight to minimize Lboost.

TABLE I
THE TIME COMPLEXITY OF EACH STEPS DURING TRAINING MODEL

Stage Term Complexity

Pre-train Stage Compute Lpre−train O(n2)

Train Stage

Obtain positive confidence S O(n2)
Compute Llocal O(n2)
Compute Lglobal O(n2)
Compute Lclu cont O(C2)
Compute Ltrain O(n2)

Boost Stage Select most σ% confident samples O(n logn)
Compute Lboost O(n2)

O(n2), the batch size is always much smaller than the dataset
size, so it does not cause excessive time complexity. Each time
complexity is summarized in Table I.

On the other hand, this paper mainly regards the nearest
neighbors as potential positive pairs, which improves the
discriminability of representation learning. As an extension
to contrastive learning, the proposed method can be well
extended to different tasks, such as few-shot learning, zero-
shot learning, anomaly detection, etc. Meanwhile, for mixed
data types, proposed method can still serve as a good rep-
resentation learning paradigm, providing important technical
support without adding additional computational costs. For
example, for structured data (such as age), the perception
radius can be calculated by Euclidean distance; for set data
such as diagnosis codes, Jaccard similarity can be used instead.
This flexibility shows that the soft neighbor strategy has the
potential to handle multi-modal data.
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TABLE II
DETAILED INFORMATION ABOUT FIVE BENCHMARK DATASETS.

Datasets Classes Split Samples

CIFAR-10 10 Train+Test 60000
CIFAR-100 20 Train+Test 60000
STL-10 10 Train+Test 13000
ImageNet-10 10 Train 13000
ImageNet-Dogs 15 Train 19500

IV. EXPERIMENTS

In this section, we perform experimental validation on our
proposed method. We first discuss the experimental settings
including implementation details, dataset descriptions, and
evaluation metrics. Then we give a series of visualized exper-
iments, comparison experiments and ablation studies to help
better understand the methods.

A. Experimental Settings

1) Datasets & Metrics: In this paper, we assess our pro-
posed method on five widely-used image datasets: CIFAR-10,
CIFAR-100 [45], STL-10 [46], ImageNet-10, and ImageNet-
Dogs [15]. For CIFAR-100, we took its 20 super-classes as the
ground truth instead of 100 fine-grained classes. The detail of
the datasets is summarized in Table II.

We use three widely-used clustering metrics, namely nor-
malized mutual information (NMI) [47], clustering accuracy
(ACC) [48] and adjusted Rand index (ARI) [49]. All metrics
with higher values demonstrate better clustering results.

2) Network Architectures: For a fair comparison with
previous works [50] [51], we adopt ResNet18 as encoder
on CIFAR-10, CIFAR-100 and STL-10, and ResNet50 in
ImageNet-10 and ImageNet-Dogs. As ResNet is designed for
squared images with size 224×224, we follow previous works
[23], [52] to modify the standard ResNet to help the backbones
work in the small size images, such as CIFAR-10 and CIFAR-
100. As for the predictor, we use a fully-connected layer with
ReLU squeezing features to a low-dimensional space, whose
dimension is equal to the number of clusters.

3) Image Processing: First of all, we normalize all datasets
with different means and standard deviations (std). Following
Cutout [53], the augmentation was randomly selected four
transformations from RandAugment [54], whose parameters
were uniformly sampled between fixed ranges. We list whole
parameters in Table III.

4) Implementation Details: At the Pre-train Stage,
we follow SCAN and NNM to train our encoder for each
dataset respectively. At the Train Stage, we use Adam
optimizer with momentum 1e-4 learning rate and 1e-4 weight
decay. and train models for 500 epochs. We experimentally
set the hyper-parameter for cross-entropy loss ϵ to be 5, and
α1 = α2 = 1, respectively. The number of soft neighbors K is
selected as 10. At the Boost Stage, we fixed the learning
rate to 1e-4 and trained the model 200 epochs. we select the
σ = 70% most confident samples, set threshold γ is set to
0.99 and the number of soft neighbors K is also selected as

TABLE III
AUGMENTATIONS INFORMATION FOR FIVE BENCHMARK DATASETS.

Datasets Mean Std

CIFAR-10 [0.491, 0.482, 0.447] [0.202, 0.199, 0.201]
CIFAR-100 [0.507, 0.487, 0.441] [0.268, 0.257, 0.276]
STL-10 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ImageNet-10 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ImageNet-Dogs [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

Transformation Parameter Range

Brightness B [0.05,0.95]
Color C [0.05,0.95]
Contrast C [0.05,0.95]
Posterize B [4,8]
Rotate θ [-30,30]
Sharpness S [0.05,0.95]
Shear X,Y R [-0.1,0.1
Solarize T [0,256]
Translation X, Y λ [-0.1,0.1]

10. Here, we also empirically set β1 = β2 = 1 for all datasets.
All experiments are implemented on RTX 3090Ti with CUDA
11.0 and PyTorch 1.6.0 [55].

B. Visualization

1) Illustration for positiveness confidence of soft neighbors:
In this sub-section, we directly illustrate the positiveness confi-
dence of soft neighbors through experiments on ImageNet-10.
As shown in Fig. 5, we randomly selected four samples and
calculated the positiveness confidence of its top-10 neighbors.
The most intuitive one is Airliner (the second row in the
figure), whose local nearest neighbor is almost a flip of the
images. Another is Airship (the third row in the figure). Even
though the staff appears in the second picture, our model still
regards it as the nearest neighbor of the current sample. It
sidely reflects that our model can well extract important feature
information from raw image.

2) The evolution of features learning and cluster assign-
ment during training process: Next we experimentally illus-
trate the convergence of the model. It can be known that
our proposed method is mainly divided into three major
steps: Pre-train Stage, Train Stage, and Boost
Stage. Therefore, after completing each stage, we perform
T-SNE [56] to visualize obtained features after the encoder.
At the same time, the clustering assignment is represented by
different colors. As shown in Fig. 6-(a), after the Pre-train
Stage, we can see the obscure distribution of each cluster.
In other words, we get a rough neighborhood structure for
downstream clustering learning. Then after Train Stage,
we can clearly observe the clear distribution of features and
the balance of cluster assignment in Fig. 6-(b). At the Boost
Stage, as Fig. 6-(c) displays, we obtained more compact and
well-separated clusters, which illustrates the contribution of a
pseudo-labels based learning strategy.

C. Comparson Results

In the comparisons, we adopt both traditional methods,
including K-Means [1], SC [57], AC [58], NMF [59], and
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(a) CIFAR-10 (b) CIFAR-100 (c) STL-10 (d) ImageNet-10 (e) ImageNet-Dogs

Fig. 4. Visualization of some image samples from the five benchmark datasets.

s1 = 1.000 s2 = 0.983 s3 = 0.979 s4 = 0.976 s5 = 0.975Maltese Dogs

s1 = 1.000 s2 = 0.997 s3 = 0.993 s4 = 0.988 s5 = 0.980Airliner

s1 = 1.000 s2 = 0.975 s3 = 0.959 s4 = 0.944 s5 = 0.941Airship

s1 = 1.000 s2 = 0.981 s3 = 0.980 s4 = 0.971 s5 = 0.967Sports Car

Current Instance NN-1 NN-2 NN-3 NN-4 NN-5

s6 = 0.967 s7 = 0.925 s8 = 0.864 s9 = 0.843 s10 = 0.688

s6 = 0.929 s7 = 0.904 s8 = 0.903 s9 = 0.889 s10 = 0.872

s6 = 0.917 s7 = 0.905 s8 = 0.862 s9 = 0.822 s10 = 0.811

s6 = 0.963 s7 = 0.957 s8 = 0.955 s9 = 0.838 s10 = 0.683

NN-6 NN-7 NN-8 NN-9 NN-10

Fig. 5. Nearest neighbors (NN) of the randomly selected samples on ImageNet-10.

(a) Pre-train Stage (b) Train Stage (c) Boost Stage

Fig. 6. Feature space visualization on CIFAR-10. We apply T-SNE on features
spaces and use different colors to indicate variant cluster assignments.

deep clustering methods, such as AE [60], DAE [61], DCGAN
[62] DeCNN [63], VAE [64], JULE [14], DEC [19], DAC
[15], ADC [65], DDC [37], DCCM [18], IIC [21], PICA
[50], DCDC [66], CC [26], Pretext [32]+K-means, SCAN
[23], NNM [52], DFVC [67], EDESC [68], DeepDPM [69],
SPICE [38] and TCL [22].

We report the clustering performance of the above methods
on five datasets in Table IV. It can be seen that our proposed
method can achieve good performance in most cases. It is
worth noting that in the Train Stage, our method has
been able to match or even better than most comparisons. For

example, on ImageNet-10, our method is already 1.0% higher
than the second-best method SPICE in ACC. It can be seen that
compared with the latest clustering method TCL, our method
is still competitive and achieves better performance on CIFAR-
10/100 and ImageNet-10. It is worth noting that CC [26] and
TCL [22] use cluster-level contrastive learning to obtain the
final clustering assignment, which have been widely used in
many unsupervised tasks. Our proposed method can still obtain
comparable results on different datasets, which shows that
our method has potential application value in unsupervised
learning. Finally, the results show that the proposed method
achieves promising performance even on all datasets.

D. Ablation Study

In this section, several ablation experiments are proposed
to verify the importance of each module. From top to bottom,
soft neighbors are the core of this article, and we first analyze
their important role in the entire training process including in
Train Stage and Boost Stage.

1) Effectiveness of the modules in Train Stage: Recall
the Section III-B, Train Stage mainly includes local and
global level losses related to neighbors and a cluster-level loss.
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TABLE IV
CLUSTERING PERFORMANCE ON FIVE BENCHMARK DATASETS. THE FIRST (GREEN) AND SECOND (BLUE) BEST RESULTS ARE HIGHLIGHTED.

Datasets CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-Means [1] 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020
SC [57] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013
AC [58] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021
NMF [59] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016
AE [60] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073
DAE [61] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078
DCGAN [62] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078
DeCNN [63] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073
VAE [64] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079
JULE [14] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028
DEC [19] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079
DAC [15] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111
ADC [65] - 0.325 - - 0.160 - - 0.530 - - - - - - -
DDC [37] 0.424 0.524 0.329 - - - 0.371 0.489 0.267 0.433 0.577 0.345 - - -
DCCM [18] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182
IIC [21] - 0.617 - - 0.257 - - 0.610 - - - - - - -
PICA [50] 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201
DCDC [66] 0.585 0.699 0.506 0.310 0.349 0.179 0.621 0.734 0.547 0.817 0.879 0.787 0.360 0.365 0.207
CC [26] 0.705 0.790 0.637 0.431 0.429 0.266 0.746 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274
Pretext [32]+K-means 0.598 0.659 0.509 0.402 0.395 0.239 0.604 0.658 0.506 - - - - - -
SCAN [23] 0.715 0.816 0.665 0.449 0.440 0.283 0.673 0.792 0.618 - - - - - -
NNM [52] 0.748 0.843 0.709 0.484 0.477 0.316 0.694 0.808 0.650 - - - - - -
DFVC [67] 0.643 0.756 0.615 0.435 0.472 0.261 0.643 0.731 0.598 0.753 0.847 0.736 0.375 0.391 0.184
EDESC [68] 0.464 0.627 - 0.370 0.385 - 0.687 0.745 - - - - - - -
DeepDPM [69] - - - - - - 0.740 0.840 0.700 - - - - - -
SPICE [38] 0.734 0.838 0.705 0.448 0.468 0.294 0.817 0.908 0.812 0.812 0.921 0.836 - - -
TCL [22] 0.792 0.867 0.737 0.522 0.517 0.337 0.732 0.792 0.564 0.869 0.891 0.823 0.624 0.639 0.503

Train Stage 0.743 0.842 0.706 0.473 0.475 0.305 0.609 0.733 0.552 0.837 0.918 0.832 0.417 0.428 0.271
Boost Stage 0.795 0.886 0.777 0.502 0.508 0.347 0.612 0.736 0.559 0.855 0.931 0.856 0.445 0.463 0.308

TABLE V
ABLATION ANALYSIS AT TRAIN STAGE ON CIFAR-10, CIFAR-100 AND IMAGENET-10. ✓ DENOTES THE LOSS IN USE.

Losses CIFAR-10 CIFAR-100 ImageNet-10

No. Local Level Global Level Cluster Level NMI ACC NMI ACC NMI ACC

1 ✓ 0.722 0.827 0.449 0.443 0.829 0.908
2 ✓ 0.727 0.827 0.454 0.449 0.831 0.909
3 ✓ 0.713 0.816 0.452 0.420 0.826 0.905
4 ✓ ✓ 0.731 0.831 0.462 0.456 0.835 0.913
5 ✓ ✓ ✓ 0.743 0.842 0.473 0.475 0.837 0.918

In order to verify their role in the training process, we conduct
ablation studies by removing one or two of the losses and
report the results in Table V. Here, we use the local level as
the baseline to observe different losses function. Noting that
in this section we mainly discuss the Train Stage, so we
report clustering results without boost strategy for simplicity.
It can be seen that both global level and cluster level loss have
significantly improved performance since the former makes the
model more accurate in finding soft neighbors and enhances
representation learning, which can make the entire cluster
distribution more distinct and compact.

2) Effectiveness of the modules in Boost Stage: In the
following experiments, all ablations only affect at Boost
Stage, thus we perform all experiments on the same model
trained in the Train Stage for convenience. Similarly, we
first perform an ablation analysis on the loss that appears in
the Boost Stage. The results of the ablation are shown
in Fig. 7. Among them, the red bar represents the result at
Train Stage. It can be seen that only using the pseudo-

label loss can slightly improve the clustering performance. On
the contrary, when only using soft clustering loss based on
pseudo-label, it has a side effect. One possible reason is that it
destroys the distribution of clusters during training. The joint
use of the two losses, the soft neighbor loss is more like a
fine-tuned item, to correct the supervised learning based on
the pseudo-label to achieve better performance.

3) Train Stage v.s. Boost Stage: To verify the effectiveness
of Boost Stage, we provide an ablation analysis as follows.
Specifically, we give two different experimental settings: 1)
Train Stage (700 epochs) and 2) Train Stage (500
epochs) + Boost Stage (200 epochs). Meanwhile, the
remain settings are the same as the main manuscripts. Fig. 8
shows the performance of different training strategies. For
better readability, we fill in red before 500 epochs and blue
afterwards.

As shown in Fig. 8, it can be observed that the performance
tends to be stable after 500 epochs when using only the
train stage (light-colored lines). However, after adding Boost
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Fig. 7. Ablation analysis at Boost Stage on four datasets in ACC (top) and NMI (bottom). Models at Train Stage are adopted as baselines and boosted with
different losses.
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Fig. 8. The effectiveness of Boost Stage on four datasets.

Stage, the performance will be significantly improved, espe-
cially on CIFAR-10 and STL-10. As a result, longer training
does not make the performance better, which directly reflects
the effectiveness of the Boost Stage.
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Fig. 9. The impacts of ϵ at Train Stage on four datasets.

E. Analysis on Parameter Sensitivity

In the above sections, we discuss the impact of different
modules on method performances. Next, we will discuss how
hyper-parameters effects the performances.
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(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-10 (d) ImageNet-Dogs

Fig. 10. Clustering performance under different ratio σ of pseudo labels on four datasets.
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Fig. 11. Clustering performance (ACC) under various selected top-K neighbors in both Train and Boost stage.
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Fig. 12. Clustering performance (NMI) under various selected top-K neighbors in both Train and Boost stage.

1) Effectiveness of the entropy loss: In this subsection, we
will discuss the how impact of entropy loss term on clustering
performance. We experimentally find that the model obtains
trivial solutions and all samples are predicted into one category
without entropy loss. When other parameters are fixed, we
set the ϵ in the range of Sϵ = {2.0, 5.0, 10.0}, and conduct
experiments on four different datasets. Fig. 9 summarizes the
impact of different ϵ values on performance.

As shown in Fig. 9, our method achieves the optimal results
when ϵ is set to 5. We believe that when the value of ϵ is
too small, the method assigns all samples to the same cluster.
On the contrary, when ϵ is excessively large, the entropy loss
will result in uniformly distributed predictions. In other words,
each sample tends to have an equal probability to be assigned
to different categories, thereby degrading prediction accuracy.

Therefore, in all experiments, we fixed ϵ = 5 so that the model
can get the best results.

2) The quality of pseudo-labels: The above experiment
shows that the generation of pseudo-label is the most important
part of the Boost Stage. For a pseudo-labels generation,
the basic keys are threshold γ and the ratio σ selected from
candidate pseudo-labels.

Here, we set γ to Sγ = {0.9, 0.95, 0.99} respectively
to observe its impact on the clustering effect. It is worth
mentioning that we do not set γ too low. The reason is that
we find that after Train Stage, the prediction confidence
of the cluster assignment is almost above 0.9 during the
experiment. Table VI summarizes the experimental results
under the different values of γ. We can see that when the
threshold is higher, better results can be obtained. This also
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TABLE VI
CLUSTERING PERFORMANCE UNDER DIFFERENT VALUE OF THRESHOLD

γ ON FOUR DATASETS. BOLDFACE DENOTES THE BEST RESULTS.

Datasets CIFAR-10 CIFAR-100

threshold γ NMI ACC ARI NMI ACC ARI

0.90 0.781 0.876 0.761 0.489 0.492 0.330
0.95 0.788 0.879 0.764 0.499 0.501 0.342
0.99 0.795 0.886 0.777 0.502 0.508 0.347

Datasets ImageNet-10 ImageNet-Dogs

threshold γ NMI ACC ARI NMI ACC ARI

0.90 0.846 0.926 0.847 0.423 0.422 0.269
0.95 0.850 0.928 0.850 0.425 0.430 0.286
0.99 0.855 0.931 0.856 0.445 0.463 0.308

directly shows that a higher threshold can make the selected
pseudo-label more representative and closer to the ground
truth.

Now we discuss the choice of the number of pseudo-labels.
We set the selected ratios to Sσ = {0.1, 0.3, 0.5, 0.7, 0.9} to
observe their impact on the model, and report the results in
Fig. 10. There is a general trend from Fig. 10-(a) to Fig. 10-
(d) that the clustering results increase and then decrease
corresponding to the ratios, and the optimal ratio value is taken
at 0.7. The reason for this is that if the number of pseudo-
labels is too small, then in the process of supervised learning,
the fine-tuning ability of the model is limited. Conversely,
if the number of labels obtained is too large, wrong clas-
sification samples may be introduced, hurting the clustering
performance.

3) Effectiveness of the soft neighbors strategy: To verify
the importance of soft neighbors throughout the whole training
process, we conduct ablation studies by changing the number
of considered nearest neighbors, namely, the value of K.
Fig. 11 and Fig. 12 shows the clustering performance of the
algorithm under different K values. It can be seen that when
K = 1, the clustering performance in the two steps is not as
good as K = 5 and K = 10, which directly proves that the soft
neighbor strategy can consider more effective positive samples
and improve the model encoder’s ability for representation
learning, which in turn affects the final performance. However,
we can observe that if we consider enough neighbors, that is,
K = 20, the model cannot achieve the best results. It shows
that limited positive samples can improve the performance
well and too much soft neighbors can inevitably introduce
negative samples, messing up the training process and hurting
the clustering performance. Our results show that the best ACC
and NMI can be obtained when K = 10, so we simply adopt
K = 10 in all other experiments.

4) Generalization of soft neighbors strategy: Moreover,
we tested the generalization of the proposed soft neighbors.
SimCLR and MoCo are both well-known contrastive learning
methods. It should be noted that both methods are directly used
to pre-train the encoder. In the Train and Boost Stage,
we mainly train linear-prob to cluster assignment. Therefore,
we adopt the MoCo-v2 implementation on ImageNet-10 and
ImageNet-Dogs in Pre-train Stage, and then apply the

TABLE VII
THE PERFORMANCE ON DIFFERENT TRAINING STRATEGIES WITH SOFT

NEIGHBORS (SN) ON IMAGENET-10 AND IMAGENET-DOGS.

ImageNet-10 ImageNet-Dogs

Stages Strategy NMI ACC NMI ACC

Train Stage

SimCLR 0.821 0.898 0.401 0.410
SimCLR+SN 0.833 0.903 0.404 0.416

MoCo 0.826 0.905 0.408 0.421
MoCo+SN 0.837 0.918 0.417 0.428

Boost Stage

SimCLR 0.839 0.918 0.410 0.429
SimCLR+SN 0.848 0.936 0.419 0.452

MoCo 0.844 0.924 0.432 0.436
MoCo+SN 0.855 0.931 0.445 0.463

soft positive neighbors to see the linear-prob performance. In
fairness, we performed 500 iterations in the Train stage
and 200 iterations in the Boost Stage here. All other
parameters remain the same as in the original SimCLR and
MoCo-v2 papers. Table VII shows the performance under the
different training strategies.

As shown in Table VII, we can see that under the different
pre-training strategies, the models can obtain relatively good
results. Among them, the performance of MoCo-v2 is slightly
better than SimCLR. Since MoCo introduces more negative
pairs through memory bank during training, which enables
encoder to obtain better representation.

V. CONCLUSIONS

Based on the observation that contrastive learning will push
away false negative samples during the training process, in
this paper, we propose a contrastive clustering method based
on a soft neighbor strategy. Different from previous works
that use hard positive and negative samples, we introduce
the concept of perception radius to measure the positiveness
confidence of neighbors. According to these adaptive weights,
we propose local and global level soft neighbor losses to
partially support the current sample. At the same time, we
also use cluster level loss to make the cluster distribution more
separated. In addition, in order to further reduce the impact
of false negative samples, we also propose a soft neighbor
strategy based on pseudo-labels to fine-tune the network and
improve clustering performance. Extensive experiments on
image clustering demonstrate the effectiveness of our proposed
method.

In the future, we plan to extend this method to open-world
semi-supervised learning tasks. Meanwhile, beyond image
learning tasks, we also intend to investigate more complex
scenarios, such as multi-view clustering and heterogeneous
data clustering.
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