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A B S T R A C T

This work focuses on the problem of Generalized Category Discovery (GCD), a more realistic and challenging
semi-supervised learning setting where unlabeled data may belong to either previously known or unseen
categories. Recent advancements have demonstrated the efficacy of both pseudo-label-based parametric
classification methods and representation-based non-parametric classification methods in tackling this problem.
However, there exists a gap in the literature concerning the integration of their respective advantages. The
former tends to be biased towards the ’Old’ categories, making it easier to classify samples into the ’Old’
groups. The latter cannot learn discriminative representations, decreasing the clustering performance. To this
end, we propose Mutual-Support Generalized Category Discovery (MSGCD), a framework that unifies these
two paradigms, leveraging their strengths in a mutually reinforcing manner. It simultaneously learns high-
quality pseudo-labels and discriminative representations. It incorporates a novel Mutual-Support mechanism to
facilitate symbiotic enhancement. Specifically, high-quality pseudo-labels furnish valuable weakly supervised
information for learning discriminative representations, while discriminative representations enable the esti-
mation of semantic similarity between samples, guiding the model in generating more reliable pseudo-labels.
MSGCD is remarkably effective, achieving state-of-the-art results on several datasets. Moreover, Mutual-Support
mechanism is not only effective in image classification tasks, but also provides intuition for cross-modal
representation learning, open-world image segmentation, and recognition. The codes is available at https:
//github.com/DuannYu/MSGCD.
. Introduction

Deep learning has achieved great success in numerous computer
ision tasks [1–3]. This success is partially attributable to the existence
f large labeled datasets and corresponding supervised training fashion.
owever, the acquisition of large labeled datasets proves challenging

n many tasks and domains, demanding substantial annotation effort
r domain expertise. Semi-supervised learning (SSL) [4–6] presents an
lternative approach to alleviate the reliance on labeled data, training
odels using a limited number of labeled samples alongside a large
umber of unlabeled samples. Recent studies indicate that SSL can yield
esults comparable to supervised learning with only a modest number
f annotations. Notably, these SSL approaches typically operate under
he closed-world assumption, where both unlabeled and labeled training
ata share the same class label space [7]. This assumption constrains
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the applicability of SSL methods to scenarios where the class labels
remain consistent across labeled and unlabeled data.

Recently, Generalized Category Discovery (GCD) [8], i.e., open-
world semi-supervised learning [9], has been proposed to address a
more realistic and challenging semi-supervised learning setting where
unlabeled data can be from either previously known or new unseen
categories. Approaches to GCD can be broadly categorized into two
groups: pseudo-label-based parametric classification methods [9–11]
and representation-based non-parametric classification methods [12–
15]. The former constitutes a class of one-stage methodologies that
leverage known annotation information and extrapolated pseudo-labels
to train a parametric classifier capable of directly classifying unlabeled
data. However, the latter encompasses a class of two-stage methods.
These methods first learn a feature extraction network by integrating
ttps://doi.org/10.1016/j.inffus.2025.103020
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Fig. 1. Comparison between different kinds of GCD approaches on Stanford Cars, in-
luding pseudo-label-based parametric classification methods (orange), representation-

based non-parametric classification methods (green), and joint training methods (blue).
We divide the comparison results into three groups according to the categories of All,

ld and New.

supervised and self-supervised representation learning. Subsequently,
a non-parametric classifier, such as semi-supervised K-means++, is
employed to derive the final classification results.

Recent studies validate that predictions made by parametric classi-
ication methods often manifest a bias towards ‘Old’ categories, while

non-parametric classification methods adeptly categorize ‘New’ cate-
gories, as depicted in Fig. 1 and Table 2. This naturally raises a ques-
ion: Can the performance of GCD be further enhanced by integrating these
two paradigms? A recent state-of-the-art method ,SimGCD [16], demon-
strated performance improvements through the integration of para-

etric classification and representation learning, as shown in Fig. 1.
However, it directly incorporates classifier and projector into a Siamese
etwork with two branches, thereby excluding the potential advantages
f mutually exchanging valuable information. We argue that the de-
endable pseudo-labels generated by parametric classification methods
an guide representation learning, and conversely, the representations
onducive to clustering learned by non-parametric classification meth-
ds can offer meaningful semantic similarity information for parametric
lassification.

To address this objective, we propose Mutual-Support Generalized
ategory Discovery (MSGCD), an extension of SimGCD that introduces
n innovative mutual-support mechanism, fostering collaboration be-
ween the classifier and projector for mutual benefit. In particular, MS-
CD follows the architecture of SimGCD, employing a Siamese network
ith two branches to concurrently learn pseudo-labels for unlabeled

amples and representations for all training samples. However, it distin-
uishes itself by incorporating an additional mechanism of information
nteraction designed to facilitate mutual support between these two
ranches. During training, MSGCD utilizes the pseudo-labels predicted
y the classification branch as pseudo-supervision information to guide
he representation learning branch. Moreover, it leverages discrim-
native representations to estimate semantic similarity information,
hereby regularizing the outputs of the classification branch. Empiri-
ally, MSGCD consistently demonstrates improvements over SimGCD
cross various datasets. To the best our knowledge, MSGCD is the first
CD method that jointly learns representation and label prediction. The
ain contributions of this work are summarized as follows:

1. New perspective. To the best of our knowledge, this work is the
first study to explore and validate the efficacy of integrating the
advantages of parametric and non-parametric GCD methods.1

1 Notably, the main motivation of SimGCD [16] is to build a simple baseline
to parametric classifier rather than integrating the advantages of parametric
lassifiers and non-parametric classifiers.
 a

2 
2. New method. We provide a novel mutual-support mechanism de-
signed to facilitate information interaction between parametric
and non-parametric GCD methods. Notably, this mechanism is
independent of existing approaches and can be seamlessly inte-
grated into them without the need for intricate modifications.

3. New state-of-the-art results. We conduct extensive visualization
and ablation experiments to validate the efficacy of MSGCD.
Furthermore, results from experiments on four standard datasets
conclusively indicate that MSGCD outperforms existing state-of-
the-art methods by a significant margin.

2. Related works

2.1. Semi-supervised learning

The objective of semi-supervised learning (SSL) is to partition sam-
les into distinct groups by utilizing a limited number of labeled
ata alongside numerous unlabeled samples [17,18]. The mainstream

approaches in semi-supervised clustering are consistency-based meth-
ods, which have been extensively utilized across diverse domains.

roadly speaking, these methods primarily strive to guarantee consis-
tent outputs from the model with various augmentations inputs. For
instance, FixMatch [6], one of the extensively employed techniques,
introduces consistency regularization by incorporating three augmen-
tations. MixMatch [19] adopts a sharpened averaged prediction of
multiple strongly augmented views as the pseudo label and enhances
them by leveraging MixUp [20] trick. Furthermore, there exist sev-
eral methods that enhance effectiveness from alternative perspectives.
FreeMatch [21] dynamically adjusts class-specific confidence thresh-
olds according to varying learning difficulties. CoMatch [22] and Sim-
Match [23] illustrate the advantages of self-supervised representation
for semi-supervised learning tasks.

Despite the significant contributions of the aforementioned meth-
ods, they all operate under the assumption that each predefined cat-
egory possesses labeled data. Nevertheless, satisfying this assumption
proves challenging in numerous real-world tasks. Therefore, this pa-
per addresses the more practical setting of open-set semi-supervised
learning (SSL).

2.2. Novel category discovery

Novel Category Discovery (NCD) [24] focuses on discovering new
categories in the unlabeled set by leveraging the knowledge learned
from the labeled set, which brings close-set assumption SSL into a more
ealistic scenario. In typical NCD methods, a model is first trained
n the labeled data and then utilized as an initialization for unsu-
ervised clustering on the unlabeled data. Previous works [25,26] in

this field utilize labeled data to train a binary classification model by
everaging pairwise image similarity. Subsequently, this trained binary
lassification model serves as a form of supervision for clustering on
he unlabeled data. Recently, the increasing popularity of contrastive
earning [27,28] has led to the proposal of numerous novel NCD

methods. For instance, RankStat [29] proposes that self-supervised pre-
training is advantageous for NCD. NCL [30] utilizes contrastive learning
o improve representation learning. UNO [31] introduces a unified

objective for concurrent learning on both unlabeled and labeled data.
owever, NCD assumes that the unlabeled data exclusively belong to

known categories and cannot encompass data from novel categories
uring the training stage. It often proves challenging to meet these strict
ssumptions in real-world applications.
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2.3. Generalized category discovery

Generalized Category Discovery (GCD) [8], also referred to as open-
world semi-supervised learning [9], serves as an extension of traditional
emi-Supervised Learning (SSL) and Novel Category Discovery (NCD).
n contrast to NCD, GCD permits unlabeled data to be associated with

both known and novel classes. Recent developments in GCD primarily
align with two trajectories: parametric classification methods based
on pseudo-labels and non-parametric classification methods based on
epresentations.

2.3.1. Parametric classification based on pseudo-labels
This category of methods strives to acquire a classifier capable of

enerating and utilizing pseudo-labels throughout the training pro-
ess. TRSSL [11] proposes a pseudo-label method that is sensitive to

class distribution, incorporating prior knowledge about class distri-
bution during training. ORCA [9] introduces an extra classifier de-
signed for novel categories, accompanied by an uncertainty adaptive
margin mechanism to mitigate learning bias towards known cate-
gories. PIM [10] approaches GCD from an information-theoretic stand-
point, presenting an objective function centered on constrained mutual
information maximization.

However, these kind of methods prefer to group samples into ‘Old’
ategories, because supervised information can directly guide the clas-

sifier’s training. It will inevitably reduce the ability to discover ‘New’
categories.

2.3.2. Representation-based non-parametric classification methods
At the heart of this category of methods lies representation learning.

Typically, these methods begin by extracting discriminative features
through a sophisticated representation learning model. Subsequently,
a fixed non-parametric classifier, such as semi-supervised K-means++,
is employed to derive the final classification results. In the context of
GCD [8], the proposal involves fine-tuning a self-supervised pre-trained
model (DINO) through a combination of supervised and unsupervised
contrastive learning. DCCL [13] improves GCD by introducing dynamic
contrastive learning of conceptions, where visual conception estimation
and learning of conceptional representation occur alternately. Prompt-
CAL [32] adopts a two-stage contrastive affinity learning approach,
introducing auxiliary visual prompts and alternately refining semantic
prompts while conducting contrastive affinity learning. In addition,
iffering from the methods working on an assumption that the class
umber in the unlabeled data is known, PIM [10] and GPC [14] propose

to estimate the class number automatically during training.
However, despite the promising outcomes achieved by non-

arametric classification methods, they still suffer from the quadratic
omplexity of the clustering procedure, limiting their application on
arge-scale datasets. In addition, to our knowledge, MSGCD is the first
o propose a cross-space joint training strategy. The basic idea of MS-
CD can also be used in unsupervised and semi-supervised clustering

asks.

2.3.3. Joint-learning-based method
SimGCD [16] has recently integrated parametric classification and

epresentation learning into a unified framework, showcasing sim-
licity alongside effectiveness and producing promising results across
arious benchmarks. However, SimGCD ignores the potential rela-
ionship between representation learning and outcome prediction. To
andle these issues, we extend upon SimGCD, enhancing its capabilities
y introducing a novel mutual support mechanism. This mechanism
acilitates collaboration between parametric and non-parametric classi-
ication methods, thereby allowing them to mutually benefit from each
ther’s strengths. In our previous work [33], we proposed an alternative
ethod, called PCR, to jointly represent and learn the label space using
M optimization. To the best of our knowledge, MSGCD is the first
ethod that jointly learns different spaces in an end-to-end manner.
3 
3. Method

3.1. Problem formulation

GCD is a more challenging semi-supervised learning setting where
an unlabeled dataset 𝑢 = {(𝐱𝑢𝑖 , 𝐲𝑢𝑖 )} ∈  × 𝑢 and a labeled dataset

𝑙 = {(𝐱𝑙𝑖 , 𝐲𝑙𝑖 )} ∈  ×𝑙 are provided, and 𝑙 ∈ 𝑢. GCD aims to catego-
ize novel categories in 𝑢 by leveraging known prior from the labeled

dataset 𝑙. In addition, we follow existing studies [16] and assume that
he number of labeled categories 𝑙 in 𝑙 and unlabeled categories 𝑛
n 𝑢 are known. 𝐾 denotes the total number of categories.

3.2. Overview

To amalgamate the benefits of pseudo-label-based parametric clas-
sification methods and representation-based non-parametric classifica-
tion methods, we introduce a novel framework named Mutual-Support
Generalized Category Discovery (MSGCD). Illustrated in Fig. 2, MSGCD
concurrently learns a label space and a representation space utilizing
a Siamese network with two branches. Crucially, it incorporates a
mutual-support mechanism facilitating mutual enhancement between
these spaces. Formally, during training, given a mini-batch of data
𝐵 = {𝐱1, 𝐱2,… , 𝐱𝑏}, we partition it into two subsets: labeled set 𝐵𝑙 and
unlabeled set 𝐵𝑢. For each instance 𝐱𝑖, we first generate two different
views (𝐱𝑎𝑖 , 𝐱

𝑏
𝑖 ) using random augmentation. Then, the features (𝐟𝑎𝑖 , 𝐟

𝑏
𝑖 ) are

generated using a shared backbone. Subsequently, Subsequently, these
features are projected into a label space and a representation space,
producing label predictions (𝐩𝑎𝑖 ,𝐩

𝑏
𝑖 ) and 𝓁2-normalized representation

vectors (𝐳𝑎𝑖 , 𝐳
𝑏
𝑖 ), respectively. Finally, the label space and the represen-

tation space are jointly optimized. The overall objective of MSGCD
is

 = 𝑐 𝑙 𝑠 + 𝑟𝑒𝑝 + 𝑚𝑠 , (1)

where 𝑐 𝑙 𝑠 and 𝑟𝑒𝑝 represent the fundamental losses for label space
learning and representation space learning, respectively. Addition-
ally, 𝑚𝑠 constitutes an objective for our proposed mutual-support
mechanism, comprising a graph-based distribution calibration loss and
a prototype contrastive loss. In practical implementation, prevalent
parametric/non-parametric classification methods, such as PIM [10],
PromptCAL [32] and DCCL [13] can be employed to denote 𝑐 𝑙 𝑠
and 𝑟𝑒𝑝. For clarity, in this work, we build upon SimGCD [16], a
straightforward yet effective baseline. Subsequently, we delve into the
etailed explanation of these three components.

3.3. Label space learning

We follow adopt a prototypical classifier ℎ for label space learning.
Specifically, we randomly initialize 𝐾 parametric prototype vectors
{𝐜1, 𝐜2,… , 𝐜𝐾}, where 𝐜𝑘 stands for the 𝑘th category. Correspondingly,
the label prediction of 𝑥𝑖 is 𝐩𝑖 = {𝑝1𝑖 , 𝑝2𝑖 ,… , 𝑝𝐾𝑖 }, where

𝑝𝑘𝑖 =
exp ( 1𝜏 (𝐟𝑖∕‖𝐟𝑖‖)𝑇 (𝐜𝑘∕‖𝐜𝑘‖))

∑

𝑗 exp ( 1𝜏 (𝐟𝑖∕‖𝐟𝑖‖)𝑇 (𝐜𝑗∕‖𝐜𝑗‖))
, (2)

and 𝜏 denotes the temperature parameter in Softmax normalization.
Obviously, 𝐩𝑖 is measured by the cosine similarity between 𝐟𝑖 and
all prototype vectors. During training, the prototypical classifier ℎ is
trained by jointly optimizing a supervised loss on labeled samples and
a self-supervised loss on all samples, i.e.,

𝑠
𝑐 𝑙 𝑠 =

1
2|𝐵𝑙

|

∑

𝑖∈𝐵𝑙

𝑙(𝐲𝑖,𝐩𝑎𝑖 ) + 𝑙(𝐲𝑖,𝐩𝑏𝑖 ) (3)

and

𝑢
𝑐 𝑙 𝑠 =

1
|𝐵|

∑

𝑙(�̂�𝑎𝑖 ,𝐩
𝑏
𝑖 ) − 𝜖 𝐻(�̄�𝑖), (4)
𝑖∈𝐵
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Fig. 2. The overarching framework of MSGCD involves joint learning of a representation space and label space, with enhancements derived from pseudo-label information and
semantic similarity information, respectively.
where 𝑙(𝐲𝑖,𝐩𝑖) denotes the cross-entropy loss, �̄�𝑖 =
1
2 (𝐩

𝑎
𝑖 + 𝐩𝑏𝑖 ), and 𝐻(�̄�)

denotes the mean-entropy maximization regularizer [34]. Moreover, �̂�𝑎𝑖
denotes the soft pseudo-labels produced by the view 𝐱𝑎𝑖 . The overall
objective for label space learning is
𝑐 𝑙 𝑠 = 𝜆𝑠

𝑐 𝑙 𝑠 + (1 − 𝜆)𝑢
𝑐 𝑙 𝑠 (5)

where 𝜆 is a trade-off parameter. In particular, label prediction 𝐩
directly reveals the classification results in the testing stage.

3.4. Representation space learning

Similarly, for representation space learning, we engage in both su-
pervised contrastive learning using labeled samples and self-supervised
contrastive learning across all training instances. Specifically, the su-
pervised contrastive learning loss is computed as follows:

𝑠
𝑟𝑒𝑝 =

1
|𝐵𝑙

|

∑

𝑖∈𝐵𝑙

1
|𝑖|

∑

𝑞∈𝑖

− log exp (𝐳𝑇𝑖 𝐳𝑞∕𝜏𝑠)
∑𝑖≠𝑗

𝑗 exp (𝐳𝑇𝑖 𝐳𝑗∕𝜏𝑠)
. (6)

where 𝑖 denotes the positive pairs of 𝐱𝑖. And, the self-supervised
contrastive learning loss is

𝑢
𝑟𝑒𝑝 =

1
|𝐵|

∑

𝑖∈𝐵
− log exp (𝐳𝑇𝑖 𝐳′𝑖∕𝜏𝑢)

∑𝑖≠𝑗
𝑗 exp (𝐳𝑇𝑖 𝐳′𝑗∕𝜏𝑢)

, (7)

where 𝜏𝑢, 𝜏𝑠 are two temperature parameters. The overall objective for
representation space learning is
𝑟𝑒𝑝 = 𝜆𝑠

𝑟𝑒𝑝 + (1 − 𝜆)𝑢
𝑟𝑒𝑝 . (8)

Note. SimGCD [16] proposes to jointly learn the label space and
representation space. And, the overall objective is
𝑆 𝑖𝑚𝐺 𝐶 𝐷 = 𝑐 𝑙 𝑠 + 𝑟𝑒𝑝 . (9)

Although SimGCD is notably simple, its effectiveness is demonstrated
by outperforming several state-of-the-art (SOTA) methods, as illustrated
in Fig. 1. However, we contend that SimGCD does not fully exploit the
potential of joint learning. In fact, the pseudo-labels generated from the
label space can serve as weakly supervised information for represen-
tation space learning. Conversely, the semantic similarity information
derived from the representation space proves valuable for label space
learning.

3.5. Mutual-support mechanism

Our proposed mutual-support mechanism aims to regulate the out-
puts of the label space and representation space by leveraging valuable
4 
information from each other. This mechanism comprises two com-
ponents: graph-based distribution calibration and pseudo-label-based
prototype contrastive learning. On one hand, the high-quality pseudo-
labels generated from the label space furnish valuable supervised in-
formation for learning discriminative representations. On the other
hand, discriminative representations offer meaningful semantic simi-
larities among samples, guiding the model to generate more reliable
pseudo-labels.

3.5.1. Graph-based distribution calibration for label space learning
As previously discussed, the representation space can generate

clustering-friendly representations that unveil meaningful semantic
similarities among samples. Motivated by this observation, we intro-
duce a graph-based distribution calibration for label space learning.
Given the representations {𝐳𝑖}

2|𝐵|
𝑖=1 for the batch of samples, we construct

a similarity graph by creating a similarity matrix 𝐖 of size 2|𝐵|× 2|𝐵|.
Subsequently, we employ the graph-based distribution calibration loss
to regulate the output of the label space:

𝑑 𝑐 = 𝑤𝑖𝑗𝑑
2
𝑖𝑗 + (1 −𝑤𝑖𝑗 )(𝛿 − 𝑑𝑖𝑗 )2+ (10)

where 𝑤𝑖𝑗 is the semantic similarity between 𝐳𝑖 and 𝐳𝑗 , and 𝑑𝑖𝑗 is the
euclidean distance between probability distribution vectors 𝐩𝑖 and 𝐩𝑗 .
The first term encourages samples with larger semantic similarity to
have similar label predictions. The second term pushes the samples
considered more dissimilar in the representation space more heavily
out of the margin in the label space.

Indeed, the quality of estimated semantic similarities holds
paramount importance in label space learning. However, estimating
reliable semantic similarities becomes challenging due to the presence
of numerous unlabeled samples. To address this challenge, we pro-
pose to utilize contextualized similarity to capture common patterns
frequently observed within each class. Specifically, the contextualized
semantic similarity of a pair of samples (𝐳𝑖, 𝐳𝑗 ) is a combination of
their pairwise similarity 𝑤𝑝

𝑖𝑗 and contextual similarity 𝑤𝑐
𝑖𝑗 . Formally,

the pairwise similarity is

𝑤𝑝
𝑖𝑗 = exp

(

−
‖𝐳𝑡𝑖 − 𝐳𝑡𝑗‖

2
2

𝜎

)

, (11)

where 𝜎 represents the Gaussian kernel bandwidth. Contextual simi-
larity operates on the assumption that a pair of samples with larger
overlapping contexts are more likely to be semantically similar. One
approach to defining context is to consider the nearest neighbors of
a sample. Nonetheless, the closest neighbors can be unreliable, par-
ticularly in cases where the representation space lacks discriminative
attributes. To handle this issue, we instead adopt 𝑘-reciprocal nearest
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Fig. 3. How to determine the semantic similarity according to the relation between two samples.
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neighbors to serve as the context [35–38]. The 𝑘-reciprocal nearest
neighbors of a sample 𝐱𝑖 in representation space is defined as:

𝑅𝑘(𝐳𝑖) = {𝐳𝑗 |(𝐳𝑗 ∈ 𝑁𝑘(𝐳𝑖)) ∩ (𝐳𝑖 ∈ 𝑁𝑘(𝐳𝑗 ))} , (12)

where 𝑁𝑘(𝐳𝑖) is 𝑘 nearest neighbors of 𝐳𝑖. Further, we calculate the
contextual similarity using asymmetric Jaccard similarity

̃ 𝑐𝑖𝑗 =
|𝑅𝑘(𝐳𝑖) ∩ 𝑅𝑘(𝐳𝑗 )|

|𝑅𝑘(𝐳𝑖)|
,∀𝐳𝑗 ∈ 𝑅𝑘(𝐳𝑖) . (13)

In addition, we expect that similar samples exhibit similar spatial
relationships. Hence, we adopt the idea of query expansion [38] to
eformulate the contextual similarity as

̂ 𝑐𝑖𝑗 =
1

𝑁𝑘∕2(𝐳𝑖)
∑

ℎ∈𝑁𝑘∕2(𝐳𝑖)
�̃�𝑐

ℎ𝑗 . (14)

To guarantee the symmetry, the final contextual similarity 𝑤𝑐
𝑖𝑗 is given

by

𝑤𝑐
𝑖𝑗 =

1
2
(�̂�𝑐

𝑖𝑗 + �̂�𝑐
𝑗 𝑖) . (15)

We combine the pairwise similarity and contextual similarity together
o obtain the final semantic similarity

𝑤𝑖𝑗 =
1
2
(𝑤𝑝

𝑖𝑗 +𝑤𝑐
𝑖𝑗 ) . (16)

The semantic similarity explores both the distance relationships and
contextual relationships. For any pair of samples, as shown in Fig. 3,
four main cases always exist, which are summarized as follows:

• Case 1: Despite a small Euclidean distance between ① and ②,
and the absence of shared nearest neighbors, they exhibit low
contextual similarity.

• Case 2: In contrast to Case 1, ① and ③ share many nearest
neighbors but are far apart from each other. Consequently, they
possess higher contextual similarity but lower pairwise similarity.

• Case 3: ① and ④ represent the worst case as they exhibit lower
pairwise similarity, a large Euclidean distance, and no shared
neighbors.

• Case 4: ③ and ④ share the 𝑘-reciprocal nearest neighbors and are
close to each other with a small Euclidean distance. Thus, they
exhibit both contextual and pairwise similarity.

3.5.2. Pseudo-labels-based prototype contrastive learning for representation
space learning

As presented in Table 2, the predictions of all methods exhibit bias
owards ‘Old’ categories. We posit that the primary reason for this

bias lies in the absence of constraints over ‘New’ categories during
training. Consequently, both the representation space and label space
emonstrate small inter-category variances in ‘New’ categories, as de-

picted in Fig. 4. An alternative approach is to enforce the features from
ifferent categories to be as far apart as possible in the representation
pace. Furthermore, the label space can be indirectly enhanced by

utilizing our proposed graph-based distribution calibration. To address
this, we propose to regularize the representation space using pseudo-
labels generated from the label space. Specifically, given a mini-batch
5 
of training data, we employ the classifier to assign pseudo-labels for
unlabeled samples. These pseudo-labels are then combined with labeled
samples to calculate two view-specific centers for each class:

µ𝑎𝑘 =

∑

𝐳𝑎𝑖 ∈𝐶𝑘
𝐳𝑎𝑖

‖

∑

𝐳𝑎𝑖 ∈𝐶𝑘
𝐳𝑎𝑖 ‖2

(17)

and

µ𝑏𝑘 =

∑

𝐳𝑏𝑖 ∈𝐶𝑘
𝐳𝑏𝑖

‖

∑

𝐳𝑏𝑖 ∈𝐶𝑘
𝐳𝑏𝑖 ‖2

, (18)

where 𝐶𝑘 denotes the 𝑘th category. Then, we construct a prototype
ontrastive loss for these prototypes. That is,

𝑝𝑟𝑜 =
1
𝐾

∑

𝑖∈𝐾
− log exp ((µ𝑎𝑖 )𝑇µ𝑏𝑖 ∕𝜏)

∑𝑗≠𝑖
𝑗 exp ((µ𝑎𝑖 )𝑇µ𝑏𝑗∕𝜏)

. (19)

Intuitively, the prototype contrastive loss encourages prototypes
from the same category to move together, facilitating cohesion, while
allowing prototypes from different categories to separate. In the realm
of traditional representation space learning for GCD, the absence of
pseudo-label information results in an inability to explore inter-class
correlations, potentially leading to ambiguous representations. The
seudo-labels-based prototype contrastive loss addresses this limita-
ion by minimizing inter-cluster similarity, promoting discriminative
epresentations, and indirectly constraining the output of the label
pace.

3.5.3. Overall loss for mutual-support mechanism
The overall objective for our proposed mutual-support mechanism is

𝑚𝑠 = 𝛼𝑝𝑟𝑜 + 𝛽𝑑 𝑐 , (20)

where 𝛼 and 𝛽 are two trade-off hyper-parameters and will be discussed
n the next section. Besides, the Algorithm 1 shows the PyTorch-like
seudo-code of our MSGCD.

4. Experiments

4.1. Datasets and evaluation metric

We validate the effectiveness of MSGCD on four widely used
datasets: CIFAR-100 [39], a standard image classification dataset,
and CUB [40], Stanford Cars [41], FGVC-Aircraft [42], three more
challenging fine-grained image classification datasets. All datasets are
artitioned into labeled and unlabeled segments. Following the ap-

proach in [8], we designate a subset comprising half of the categories
s the labeled categories (referred to as ‘Old’ categories) denoted as

𝑙. Half of the samples from these labeled class subsets are utilized
o construct the labeled set 𝑙, while the remaining samples form the
nlabeled set 𝑢. Detailed statistics and the division of datasets are
ummarized in Table 1.

For evaluation, we obtain the clustering accuracy (ACC) by compar-
ing the predicted labels �̂� and ground truth 𝐲, i.e.,

𝐴𝐶 𝐶 = 1
𝑁

𝑁
∑

𝑖=1
𝟏(�̂� = 𝛿(𝐲)), (21)

where 𝑁 is the data scale and 𝛿(⋅) is the optimal mapping function that
assigns the cluster results to ground truth.
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Fig. 4. t-SNE visualization of SimGCD on Stanford Cars. For representation space, each point stands for a category center, i.e., the mean of representations from the same class.
or label space, each point stands for a parametric prototype.
o

o

b

Algorithm 1 Pseudo code for MSGCD
# f, g, h: backbone, projector and classifier
 all_z, Y_l: all features with N*d, known labels
 cat: matrix concatenation
or epoch in range(max_epoch):
# training step
for x, uq_idxs in loader:

# random augmentations
x1 = aug(x); x2 = aug(x)
z1 = g(f(x1)); z2 = g(f(x2)) # projector
p = h(f(x1)); q = h(f(x2)) # classifier
# label space learning
cls_loss = L_cls(p, q, Y_l)
# representation space learning
rep_loss = L_rep(z1, z2, Y_l)
# mutual support mechanism
ms_loss = L_ms(cat([z1, z2]), cat([p, q]))
loss = cls_loss + rep_loss + ms_loss
loss.backward()

4.2. Implementation details

Following previous works [8,13,16], we adopt the ViT-B-16 pre-
trained by DINO [43] as a backbone network. The output [CLS] token

ith 768 dimensions serves as the feature representation for each input
mage. Fine-tuning is exclusively performed on the last transformer
lock for all methods. During the training phase, two views with
andom augmentations are fed to the model. Additionally, empirical
indings indicate that a warm-up period for contrastive learning leads
o improved performance. Therefore, mutual support is disabled in the
irst 60 epochs for all experiments. The best model is selected based
n its performance on a validation set, formed using the test splits of
ach dataset. The performance on the unlabeled dataset is determined
y selecting the best ‘New’ results. Mini-batches are constructed using
earest neighbors by computing the output of the projector and up-
ating every epoch. Each mini-batch comprises 125 images, with 25
amples and their four nearest neighbors. We train the network for 200
pochs on each dataset with a cosine decay schedule with the initial
earning rate of 0.1. For a fair comparison, aligning with [16], we set

the trade-off factor 𝜆 as 0.35, temperature parameters 𝜏𝑢, 𝜏𝑠 as 0.07, 1.0,
respectively. The 𝜎 in Eq. (11) is set to 1 and 𝜏 = 0.5 in Eq. (19). Other
hyper-parameters (i.e. 𝛼, 𝛽) will be discussed later. All experiments are
conducted on an NVIDIA GeForce RTX 3090 GPU.
6 
Table 1
Statistics and separation of datasets for GCD.

Dataset |𝑙| |𝑙| |𝑢| |𝑢|

CIFAR-100 80 20 000 100 30 000
CUB 100 1500 200 4500
Stanford cars 98 2000 196 6100
FGVC-Aircraft 50 1700 100 5000

4.3. Comparison with state-of-the-art

In this test, we compare MSGCD to 9 representative GCD meth-
ds, including four parametric classifiers (RS+ [29], UNO+ [31],

ORCA+ [9], PIM [10]), four non-parametric classifiers (GCD [8],
DCCL [13], GPC [44] and PromptCAL [32]), and a joint-learning-based
method (SimGCD [16]). Table 2 summarizes the experimental results
n four benchmark datasets, where the best results are highlighted in

bold. Moreover, the last row (𝛥) of Table 2 shows the improvements of
MSGCD over SimGCD. Upon reviewing Table 2, three conclusions can
e drawn.

• Parametric classifiers often exhibit bias towards ‘Old’ categories,
whereas non-parametric classifiers excel at recognizing ‘New’ cat-
egories. For instance, the performance differences between para-
metric classifiers and non-parametric classifiers are −7.3% (56.2%
− 64.9%) and 11.3% (75.7% − 64.4%) on ‘CUB-New’ and ‘CUB-
Old’, respectively. One of the main reasons for this discrepancy is
that in pseudo-labels-based parametric classification methods, su-
pervised information directly influences the parametric classifier,
making it more inclined to assign samples to the ‘Old’ categories.
Consequently, these methods exhibit performance improvements
specifically on the ‘Old’ categories. In contrast, representation-
based non-parametric classification methods prioritize represen-
tation learning, allowing them to more accurately capture the
true distribution of the samples. Moreover, these methods are
adept at learning a robust representation even for samples from
unseen classes. Therefore, they have stable performances on ‘New’
categories.

• Methods based on joint learning can integrate the advantages
of both parametric classifiers and non-parametric classifiers. For
instance, both SimGCD and MSGCD demonstrate superior results
in both ‘New’ and ‘Old’ categories. Notably, the advantages over
other methods are particularly prominent in datasets such as
Stanford Cars and FGVC-Aircraft.

• MSGCD consistently enhances SimGCD across different datasets,
with maximum performance gains reaching 5.1% on ‘Old’ cate-
gories, and 4.9% on ‘New’ categories. The effectiveness of our



Y. Duan et al.

s
t
m
t
d
f
e
a

f
f
w

Information Fusion 119 (2025) 103020 
Table 2
Comparison results (%) with state-of-the-art methods. The best results are bold.

Type Methods Venue Stanford cars FGVC-Aircraft CIFAR-100 CUB

All Old New All Old New All Old New All Old New

RS+ ICLR’20 28.3 61.8 12.1 26.9 36.4 22.2 58.2 77.6 19.3 33.3 51.6 24.2
UNO+ ICCV’21 35.5 70.5 18.6 40.3 56.4 32.2 69.5 80.6 47.2 35.1 49.0 28.1
ORCA ICLR’22 23.5 50.1 10.7 22.0 31.8 17.1 69.0 77.4 52.0 35.3 45.6 30.2Parametric

PIM ICCV’23 43.1 66.9 31.6 – – – 78.3 84.2 66.5 62.7 75.7 56.2

k-means – 12.8 10.6 13.8 16.0 14.4 16.8 52.0 52.2 50.8 34.3 38.9 32.1
GCD CVPR’22 39.0 57.6 29.9 45.0 41.1 46.9 73.0 76.2 66.5 51.3 56.6 48.7
DCCL CVPR’23 43.1 55.7 36.2 – – – 75.3 76.8 70.2 63.5 60.8 64.9

PromptCAL CVPR’23 50.2 70.1 40.6 52.2 52.2 52.3 81.2 84.2 75.3 62.9 64.4 62.1
Non-parametric

GPC ICCV’23 42.8 59.2 32.8 46.3 42.5 47.9 75.4 84.6 60.1 55.4 58.2 53.1

SimGCD ICCV’23 53.8 71.9 45.0 54.2 59.1 51.8 80.1 81.2 77.8 60.3 65.6 57.7
MSGCD – 57.7 75.5 49.9 56.4 64.1 52.6 81.4 82.5 79.0 63.6 70.7 60.0Joint-learning

𝛥 3.9↑ 3.6↑ 4.9↑ 2.2↑ 5.0↑ 0.8↑ 1.3↑ 1.3↑ 1.2↑ 3.3↑ 5.1↑ 2.3↑
b
e

i
m
l
c

M

Table 3
Ablation study on the different components of our MSGCD.

𝑝𝑟𝑜 𝑑 𝑐 CUB Stanford cars FGVC-Aircraft

All Old New All Old New All Old New

(1) 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8
(2) ! 62.2 69.9 58.5 56.4 76.2 46.9 55.2 63.8 50.9
(3) ! 61.8 69.7 57.9 55.9 75.1 46.6 55.6 63.2 51.8
(4) ! ! 63.6 70.7 60.0 57.7 75.5 49.9 56.4 64.1 52.6

proposed mutual-support mechanism is evident in improving
joint-learning-based methods. This observation underscores that
despite SimGCD combining the classifier and projector, these two
components essentially operate in parallel with the backbone.
Consequently, the inconsistency in distributions between the
representation space and label space compromises the perfor-
mance of the method. In contrast, our proposed mutual-support
mechanism facilitates communication between these two distinct
modules, enabling the synergistic utilization of their respective
strengths and ultimately enhancing the algorithm’s performance.

4.4. Ablation study

Table 3 verifies the key components of MSGCD and shows their
effectiveness. It should be noted that experiment (1) was the same as
SimGCD, which serves as the baseline in our ablation experiments.

4.4.1. Effectiveness of pseudo-labels-based prototype contrastive learning
The comparison between (1) and (2) provides strong evidence sup-

porting the effectiveness of utilizing pseudo-labels to guide the repre-
sentation space. The analysis demonstrates the crucial role of pseudo-
labels in improving the classification performance of the ‘Old’ cate-
gories. This improvement is evident across three datasets, with re-
pective gains of 4.3%, 5.3%, and 4.2%. However, when it comes to
he ‘New’ categories, the observed performance gains are relatively
odest at 0.8% and 1.9%, respectively. The primary reason behind

his discrepancy lies in the classifier’s limited ability to effectively
istinguish the ‘New’ categories and generate meaningful pseudo-labels
or representation learning. As a result, the impact of pseudo-labels on
nhancing the performance in the ‘New’ categories is not as pronounced
s in the ‘Old’ categories.

4.4.2. Effectiveness of graph-based distribution calibration
The comparison between (1) and (3) provides substantial evidence

supporting the effectiveness of employing graph-based distribution cal-
ibration to guide the label space. This module enhances the classi-
ication precision of the ‘New’ categories while maintaining the per-
ormance of the ‘Old’ categories. This outcome is logical and aligns

ith the earlier discussion, as clustering-friendly representations prove

7 
Fig. 5. Impact of the loss weights on ‘All’, ‘Old’, and ‘New’ categories.

valuable in accurately categorizing the ‘New’ categories. Additionally,
it should be noted that during the training process, the supervised
information exclusively pertains to the Old class. Consequently, the em-
eddings in the representation space for the ‘Old’ class data inherently
xhibit a high level of precision.

4.4.3. Effectiveness of mutual-support mechanism
The comparison between (4) and (1), (2), (3) provides strong valida-

tion for the effectiveness of our proposed mutual-support mechanism.
MSGCD consistently enhances the performance of the baseline model
n both the ‘New’ and ‘Old’ categories. Moreover, the observed perfor-
ance gains surpass those achieved by solely relying on either pseudo-

abels-based prototype contrastive learning or graph-based distribution
alibration.

Through analysis, we uncover that the utilization of mutual-support,
as opposed to unidirectional support, is crucial. This finding highlights
the significance of bidirectional interaction and collaboration between
the classifier and projector modules within MSGCD. The mutual-support
mechanism allows for the comprehensive integration of their respective
strengths, leading to superior performance improvements across both
the ‘New’ and ‘Old’ categories.

4.5. Hyper-parameter analysis

In this section, we analyze the impact of the hyper-parameters in
SGCD, including loss trade-off parameters, 𝛼, 𝛽, 𝑘 nearest neighbors

hyper-parameters used in Eq. (10) and temperature factor 𝜏 in Eq. (19).
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Table 4
Impact of nearest neighbors 𝑘 in Eq. (10).

TOP-K Stanford cars FGVC-Aircraft CUB

All Old New All Old New All Old New

5 56.9 78.0 46.7 56.7 63.6 53.3 62.0 71.0 57.5
10 57.0 74.7 48.4 55.9 63.4 52.2 63.2 70.7 59.5
15 57.7 75.5 49.9 56.4 64.1 52.6 63.4 69.9 60.2
20 50.2 60.2 45.2 55.8 62.7 52.3 63.3 70.7 60.0

Fig. 6. Impact of temperature factor of 𝜏 on three datasets.

4.5.1. Effect of the trade-off parameters 𝛼 and 𝛽
In this experiment, we investigate the impact of varying the values

of 𝛼 and 𝛽 in 𝑆𝛼 = {0.1, 0.5, 1.0} and 𝑆𝛽 = {1, 10, 100}, respectively,
corresponding to their values during the training phase. The results are
illustrated in Fig. 5, where we observe a relatively small performance
gap between different parameter settings. On one hand, when 𝛼 and 𝛽
re assigned small values, the interaction between the classifier and
rojector is suppressed, leading to the degeneration of MSGCD into
imGCD. This occurs because tiny values restrict the mutual taught
etween the two modules. In extreme cases, such as when 𝛼 = 𝛽 = 0,
SGCD completely degrades into SimGCD. On the other hand, selecting

arge trade-off parameters can also have a detrimental effect on the
odel’s performance. This is due to the potential noise introduced

y the pseudo-supervised information used in 𝑚𝑠, as well as the
ossibility of constructing misleading semantic similarities from the
epresentation space. Overall, we find that MSGCD exhibits robustness
o parameter selection within appropriate intervals. In our experiments,
e set 𝛼 = 0.5 and 𝛽 = 10 as fixed values for all conducted experiments,
s they have demonstrated favorable performance.

4.5.2. Effect of nearest neighbors 𝑘 in Eq. (10)
The investigation on the impact of nearest neighbors, denoted by

the parameter 𝑘, is presented in Table 4. Upon reviewing the results
n Table 4, it becomes evident that MSGCD consistently achieves high

performance for 𝑘 values below 15. Moreover, MSGCD outperforms all
other GCD methods when 𝑘 is less than 15. This observation aligns with
our intuitive understanding. When 𝑘 exceeds 15, each sample considers
an excessive number of neighbors. As a result, connections are formed
between points that do not belong to the same class, leading to the
introduction of noise in the semantic similarity.
 t

8 
In sum, a smaller 𝑘 ignores the structural information between sam-
ples, thereby reducing the ability to mine latent semantic information.
On the other hand, a larger 𝑘 value will include too many redundant
amples, resulting in consideration of false positive samples that do
ot belong to the same categories. Consequently, this noise adversely

affects the classification accuracy of the impression classifier.

4.5.3. Effect of temperature factor of 𝜏
To investigate the influence of temperature factor 𝜏 on model per-

formance, we vary it in the set 𝑆𝜏 = {0.1, 0.5, 1.0}. As shown in Fig. 6,
our model achieves the best performance under different settings on all
datasets and evaluation metrics, which can robustness of center scatter
loss. Based on our results, we finally suggest using a default value of
𝜏 = 0.5 in other all experiments.

4.6. In-depth analysis

4.6.1. Analysis on contextualized semantic similarity
To gain a deeper understanding and analyze the contextualized

semantic similarity, we present it in Fig. 7. The first column represents
the anchors, while the remaining columns display the top-7 image pairs
orresponding to semantic similarity. As we can each, the top-5 nearest
eighbors belong to the same categories, with similarities all exceeding

0.7. Regarding the last two columns, they do not share the same labels
s the anchors, and their similarities are significantly lower than those
f the 5th nearest neighbors. This demonstrates the effectiveness of
ontextualized semantic similarity. In other words, even though we

know that the last two columns belong to different categories, they
are still visually difficult to distinguish. Therefore, we can explore
the valuable information in the representation space and enhance the
uality of embeddings in the label space.

4.6.2. Effect of mutual-support mechanism
In this subsection, to briefly illustrate how the mutual-support mech-

anism works, we use TSNE to visualize the category centers in the
representation space under the different models (SimGCD and MSGCD).
As shown in left side of Fig. 8, we find that the inter-class distance

ith respect to ‘New’ category centers (dark blue) is small in SimGCD,
and the distribution of ‘All’ centers in MSGCD is more uniform than
imGCD. The above compact centers distribution may be the main
easons limiting the performance. Therefore, an intuitive idea is that
akes the cluster centers far from each other. Since it can enlarge the

inter-class distance and obtain a better representations, enhancing the
effectiveness of discovering unseen categories.

In order to further analyze the advantages of MSGCD over SimGCD,
e provide another visualization experimental result on Stanford Cars.
pecifically, we estimate the probability density function of pairwise
istances between prototypical classifiers and then use kernel density

estimation (KDE) [45] to smooth it. We report the results of the
supervised model (Supervised) and initial pre-trained model (Init) for
reference. Upon observing Fig. 9, we have made several interesting
observations. For the initial pre-trained model, the distribution of
distances between each prototype is random. In contrast, for the su-
ervised model, the distribution of distances is highly concentrated,
ndicating that the pairwise distances between any two prototypes are
lmost identical. This observation directly indicates that the prototypes
re uniformly distributed in the label space, which can be considered an
deal distribution. Conversely, when considering SimGCD and MSGCD,
e can observe that MSGCD exhibits a closer alignment with the ideal
istribution, suggesting that the prototypes in MSGCD are distributed
ore uniformly within the label space. Consequently, a significant fac-

or contributing to the superior performance of MSGCD over SimGCD is
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Fig. 7. Top-7 image pairs sorted by their contextualized semantic similarity on (a) FGVC-Aircraft and (b) CUB. For each images with blue boundary are anchors, green boundary
are of the same class as anchors and those with red boundary are of a different class from anchors.
Fig. 8. TSNE visualization for category centers in the representation spaces of SimGCD and MSGCD.
the utilization of the mutual-support mechanism, which promotes a more
even distribution of prototypes within the label space.

4.6.3. Representation space v.s. label spaces
In this test, we compare the results between classifier and projector.

For projector in representation space, we obtain the results by adopting
semi-supervised k-means++. For classifier, we directly leverage its
9 
outputs as clustering assignments. According to Table 5, we summarize
the following conclusions:

• Joint-learning-based methods (SimGCD and MSGCD) outperform
than non-parametric method (GCD) both on two modules, since
they can combine the advantages of label and representation
space learning.
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Table 5
Comparison result (%) between Classifier and Projector. The best results are bold.

Method Output Stanford cars FGVC-Aircraft CIFAR-100 CUB

All Old New All Old New All Old New All Old New

GCD Projector 39.0 57.6 29.9 45.0 41.1 46.9 73.0 76.2 66.5 51.3 56.6 48.7

SimGCD Projector 48.3 65.2 40.0 52.8 56.3 51.0 73.1 78.6 62.1 56.2 60.4 54.2
Classifier 53.8 71.9 45.0 54.2 59.1 51.8 80.1 81.2 77.8 60.3 65.6 57.7

MSGCD Projector 56.7 71.6 49.5 53.3 61.8 48.8 80.4 82.3 76.4 58.6 66.4 54.7
Classifier 57.7 75.5 49.9 56.4 64.1 52.6 81.4 82.5 79.0 63.6 70.7 60.0
Fig. 9. Kernel density estimation of pairwise distance distribution of the prototypical
classifier in label space on Stanford Cars.

• MSGCD outperforms than SimGCD no matter the results are ob-
tained from projector or classifier, which denotes that the mutual-
support mechanism is effective for improving joint-learning-based
methods.

• Classifier are feasible for predicting ‘Old’ categories yet the non-
parametric method tends to predict ‘New’ categories. For exam-
ple, MSGCD’s projector achieves the 9.5% and 14.3% improve-
ments on Cars and CIFAR-100. In contrast, the best results of
MSGCD’s classifier focuses on ‘Old’ categories. There exists 3.6%
and 4.3% performance gains than the second best results. This
once again confirms the distinct roles of the representation space
and label space, where the former is capable of learning meaning-
ful representations while the latter is more sensitive to supervised
information as mentioned above.

4.6.4. Complete performance of MSGCD for different training stage
Fig. 10 illustrates the performance of our model during the training

process on ‘All’, ‘Old’, and ‘New’ data. Our performance stabilizes
around epoch = 60 and exhibits improvements thereafter, particularly
after epoch = 70. Empirically, we observe that SimGCD, employed as
the baseline, demonstrates stable performance after 60 epochs. Conse-
quently, we introduced the mutual support mechanism at epoch = 60.
After the introduction of the mutual support mechanism, fluctuations in
both the ‘Old’ and ‘New’ categories are observed in MSGCD. This occurs
because the mechanism reorganizes the sample distribution in both the
10 
representation space and label space, thereby establishing cross-space
consistency. MSGCD allows the model to overcome local optima and
attain superior results. Finally, when the positions of the cluster centers
are relatively stable, MSGCD can achieve optimal performance.

5. Conclusion

In this work, we introduced a novel framework, MSGCD, for gen-
eralized category discovery. MSGCD offers a novel perspective on
integrating the strengths of parametric classification methods and non-
parametric classification methods. Through experiments on four widely
used datasets, MSGCD consistently outperforms the baseline by sub-
stantial margins, establishing state-of-the-art performance.

It should be noted that although the interactive method in this
section can achieve good results, it is an unavoidable shortcoming that
label space and representation learning use different network param-
eters. Therefore, how to integrate label learning and representation
learning from the network structure is a challenging problem in the
next future. Additionally, we aim to generalize MSGCD to tackle a
more realistic setting where the number of new categories is unknown.
Moreover, how to extend the idea of mutual-support mechanism to
open-world image recognition, image segmentation, and even text and
sequence data is one of the important challenges in the future works.
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Fig. 10. Complete performance of MSGCD on four datasets for different training stage.
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