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Abstract—This study addresses the problem of generalized
category discovery (GCD), an advanced and challenging semi-
supervised learning scenario that deals with unlabeled data from
both known and novel categories. Although recent research
has effectively engaged with this issue, these studies typically
map features into Euclidean space, which fails to maintain the
latent semantic hierarchy of the training samples effectively.
This limitation restricts the exploration of more detailed and
rich information and degrades the performance in discovering
new categories. The emerging field of hyperbolic representation
learning suggests that hyperbolic geometry could be advanta-
geous for extracting semantic information to tackle this problem.
Motivated by this, we proposed hyperbolic hierarchical repre-
sentation learning for GCD (HypGCD). Specifically, HypGCD
enhances representations in hyperbolic space, building upon the
Euclidean space representation from two perspectives: instance-
class level and instance-instance level. At the instance-class
level, HypGCD endeavors to construct well-defined clusters, with
each sample forming a robust hierarchical cluster structure.
Concurrently, at the instance-instance level, HypGCD anticipates
that a subset of samples will display a tree-like structure in
local space, which aligns more closely with real-world scenarios.
Finally, HypGCD optimizes the Euclidean and hyperbolic space
collectively to obtain refined features. Additionally, we show
that HypGCD is exceptionally effective, achieving state-of-the-
art (SOTA) results on several datasets. The code is available at
https://github.com/DuannYu/HypGCD

Index Terms—Generalized category discovery (GCD), hier-
archical representation learning, hyperbolic space, open-world
semi-supervised learning.
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I. INTRODUCTION

MACHINE learning and deep learning have significantly
surpassed human performance in cognitive models for

tasks such as image classification, according to extensive
labeled data. Nonetheless, labeling massive amounts of data
poses significant challenges, only a small portion of them
are labeled in practical scenarios. As a result, researchers
have shifted their focus to tasks that involve incomplete
labeling. These include semi-supervised learning [1], [2], self-
supervised learning [3], noisy label learning [4], [5], and
partial label learning [6], [7], few-shot [8], [9] and zero-shot
learning [10] and among others.

Recent research has introduced the concept of novel
category discovery (NCD) [11], [12], [13], a concept inspired
by the human propensity to build upon existing knowledge
when learning new information. NCD primarily aims to
discover new categories by leveraging the knowledge derived
from a set of labeled ones. However, the implementation
of NCD assumes that all unlabeled data solely consists
of novel categories, which is not feasible in real-world
applications. To address these constraints, Vaze et al. [14]
proposed generalized category discovery (GCD), which
considers unlabeled data from both new and previously
labeled categories. In addition, NCD can be regarded as a
sub-task of out-of-distribution (OOD), since the datasets are
all novel classes in distribution [15], [16].

This article primarily focuses on GCD. Broadly speaking,
GCD can be categorized into two main types: one-stage
methods based on parametric classifiers and two-stage meth-
ods based on nonparametric classifiers. The former methods
generally involve constructing a classifier on the backbone and
optimizing it jointly using both labeled and unlabeled data.
Conversely, the latter methods initially learn cluster-favorable
embeddings through the application of self-supervised learn-
ing, followed by the use of a nonparametric classifier, such
as semi-supervised k-means, to establish the final cluster
assignments [14], [17].

Regardless of the method type, it is evident that represen-
tation learning plays a vital role in GCD [18], [19]. Previous
studies utilized both supervised and unsupervised contrastive
learning techniques to acquire cluster-friendly representations,
depending on whether the samples were labeled or unlabeled
[17], [20]. However, contrastive learning primarily focuses
on drawing positive pairs closer while distancing them from
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Fig. 1. Motivation of our proposed method. The squares denote data samples
and the pentagons denote the predefined class centers. Even though java and
coffee are neighboring leaf nodes, their concepts are completely different.
(a) Directly mapped to Euclidean space, the hierarchical structure will be lost.
(b) Tree-like structure is mapped into hyperbolic space, and it can effectively
reflect the hierarchical information between samples. (c) Java and coffee are
very close in this space.

others [21], often neglecting the inherent structural information
within clusters or classes. Therefore, it is intuitive that samples
belonging to the same category should be close to one another.
These categories should be conceptualized as sub-classes and
predefined classes, as depicted in Fig. 1. Specifically, Fig. 1(a)
demonstrates that Python, Golang, and Java are part of the
predefined class of programming languages (Lang.). However,
unlike Java, the first two are interpreted languages, whereas
Java is a compiled language. Similarly, within the Drinks
category, we discern that Sprite and Cola are carbonated bev-
erages, while Coffee typically lacks carbonic acid. Moreover,
both programming languages and drinks fall within the broader
category of Object. Therefore, an effective representation
should not only illustrate clear intra-class cluster structures for
predefined classes but also display low intraclass variance and
high interclass variance across sub-classes, thereby forming a
desirable tree-like structure. This hierarchical relationship aids
in establishing more nuanced semantic connections between
samples, thereby augmenting the network’s ability to learn
superior representations and discover novel classes. Building
on this concept, Pu et al. [17] introduced DCCL, a method that
employs a nonparametric clustering approach to dynamically
cluster data, maximizing the similarity between samples and
their respective cluster centers.

To obtain a better representations, the aforementioned meth-
ods usually project the embeddings onto a l2-normalized
hypersphere, yielding distances with cosine similarity. How-
ever, previous studies [22], [23] have demonstrated that
Euclidean spaces are unsuitable for tree-like data. As illus-
trated in Fig. 1(a), even the two neighboring leaf nodes such
as Java and Coffee, exhibit certain similarities, and their
relationship is quite distant in reality (Java’s icon is a coffee
cup). Fig. 1(c) shows that directly mapping both Java and
Coffee to Euclidean space would likely result in close distances
between them, thereby producing a suboptimal representation.
However, as shown in Fig. 1(b), mapping the samples to hyper-
bolic space can effectively mitigate this uncertainty. Because
the negative curvature characteristic of hyperbolic space causes

distances within the space to grow exponentially, improving
the preservation of the tree structure without distortion.

Motivated by the benefits of hyperbolic space, we
present hyperbolic hierarchical learning for GCD (HypGCD).
HypGCD is adept at learning representations in hyper-
bolic space, enabling more fine-grained differentiation among
sample categories, encompassing sub-classes and predefined
classes. This fine-grained capability enhances our abil-
ity to discover new categories. Broadly, HypGCD fulfills
folds: instance-class level and instance-instance level. At the
instance-class level, we underscore the differences among
various classes. In this context, we utilize pseudo-labels to
establish cluster centers in hyperbolic space for samples from
the same class, maximizing the similarity between samples
and their corresponding centers. At the instance-instance level,
our goal is to discern local hierarchical structures within
unsupervised samples. More specifically, given a sample triplet
consisting of a positive sample pair and a negative one,
we form local tree-like structures by leveraging hyperbolic
distances among all samples. This ensures that positive sample
pairs are proximate to each other, while concurrently distanced
from the negative one. Empirically, the HypGCD method
effectively harnesses the hierarchical semantic information
procured in hyperbolic space, improving the performance. The
main contributions of HypGCD are summarized as follows.

1) To the best of our knowledge, HypGCD is the first
attempt to integrate hierarchical information from hyper-
bolic space into the GCD, bridging the gap between
hyperbolic space and Euclidean space.

2) By leveraging the hyperbolic space’s suitability for
capturing hierarchical structures, HypGCD improves the
model’s capability to identify and explore new cate-
gories, preserving both local and global hierarchical
structures without any distortion.

3) We introduce a novel GCD framework, termed as
HypGCD, which seamlessly integrates the advantages
of both one-stage and two-stage GCD methods, without
necessitating additional modules.

4) Extensive experiments demonstrate significant improve-
ments over state-of-the-art (SOTA) GCD algorithms in
both generic and fine-grained tasks.

II. RELATED WORKS

A. Semi-Supervised Clustering

The aim of semi-supervised clustering (SSC) is to partition
samples into distinct groups by utilizing a limited amount
of labeled data and massive unlabeled samples. Consistency-
based method, as the most prevalent type of SSC, has been
extensively applied across a variety of domains. Broadly
speaking, these methods primarily strive to achieve consistent
outputs from the model under different augmentations. For
example, FixMatch [24], one of the most widely used methods,
introduces a consistency regularization between strong and
weak augmentations. ShrinkMatch [25] reduces the class space
to enhance prediction certainty and subsequently employs
diverse augmentations with consistency. In addition, several
methods aim to enhance effectiveness from other perspectives.
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For example, FreeMatch [26] dynamically adjusts class-
specific confidence thresholds according to varying learning
difficulties. CoMatch [27] and SimMatch [28] provide evi-
dence that self-supervised representation brings advantages to
SSC tasks.

Another perspective is on the connection relationship of
samples, which use label propagation [29], alternating opti-
mization [30], and other methods to make samples of the same
type as close as possible.

While the aforementioned methods have made notable con-
tributions, they all operate under the assumption that labeled
data are available for every predefined category. Nevertheless,
meeting this assumption proves challenging in numerous real-
world scenarios. Consequently, this article addresses a more
practical scenario of open-set SSC.

B. Generalized Category Discovery

As mentioned above, GCD, as an open-world semi-
supervised learning, is an extension of SSC and NCD. GCD
allows the overlap between labeled and unlabeled categories.
Based on the approaches used to acquire the final data clus-
ters/labels, GCD can be broadly classified into two groups:
one-stage methods based on parametric classifier and two-
stage methods based on nonparametric classifier. Next, we
will discuss them in detail.

One-stage methods based on parametric classifier aim to
train a parametric classifier using both labeled and unlabeled
data to directly assign samples to clusters. For example,
PIM [31] maximizes mutual information from an information
theory perspective to discover novel categories. SimGCD [32]
is designed with parallel feature heads and classification heads
integrated after the backbone. It employs a feature head to
learn representations and uses a classification head to make
predictions on the data.

Two-stage methods based on nonparametric classifier
involve learning a good representation initially, followed by
nonparametric classifier methods (such as semi-supervised k-
means) to obtain the final clusters/labels. For instance, GCD
[14] first utilizes supervised and self-supervised contrastive
learning to fine-tune a pretrained model and employs semi-
supervised k-means is applied on all the features to obtain
the final cluster alignments. In contrast to GCD, DCCL [17]
adopts an alternating approach that entails updating con-
cepts and leveraging contrastive learning to acquire enhanced
representations. Finally, it also employs semi-supervised k-
means to obtain the final clustering results. It is important to
note that while these types of methods can yield competitive
results, they pose challenges in practical scenarios and large-
scale datasets due to the high computational complexity of
nonparametric postprocessing methods.

Recent works have expanded GCD in several directions.
MetaGCD [33] introduced continual learning for GCD, where
models face sequential unlabeled data containing both known
and new categories. This requires continuous discovery of
new categories while maintaining recognition of known ones.
ImbaGCD [34] addressed data imbalance in GCD scenarios.
It focuses on cases where known categories significantly
outnumber unknown ones in the unlabeled data. IGCD [35]

proposed an incremental learning approach. The model evolves
through time steps, processing new labeled and unlabeled
data while discarding old information. It must both classify
known categories and discover new ones at each step. Finally,
AGCD [36] explored active learning for GCD. The method
strategically selects a small subset of unlabeled samples for
labeling to enhance overall GCD performance.

C. Hyperbolic Embedding

Hyperbolic embeddings have gained considerable attention
and find wide application in NLP [37], [38], due to their effec-
tiveness in capturing semantic information and hierarchical
structures in text. Previous works have extended conventional
linear layers to hyperbolic counterparts, redefined mathemati-
cal operations and recurrent neural networks, directly learning
embeddings in hyperbolic space [39], [40]. Drawing from
the success in NLP, many researchers have employed these
effective tools in computer vision, leading to enhanced perfor-
mance in few-shot learning [41] and representation learning
[42], [43]. Unlike constructing complex hyperbolic networks,
above methods proposed a hybrid structure that maps only
the last layers into hyperbolic space, while all other oper-
ations are performed in the Euclidean space. For example,
Yan et al. [44] proposed an unsupervised hyperbolic met-
ric learning framework by employing hierarchical clustering.
Ermolov et al. [23] employed pairwise cross-entropy loss with
hyperbolic distances in conjunction with vision transformers.
HyCoCLIP [45] uses the combined semantic information of
images and texts to optimize the semantic alignment between
images, image boxes, texts, and text boxes through hierarchical
contrast learning. In the anomaly detection task, HypAD [46]
uses the hyperbolic distance metric to optimize the model,
breaking through the limitations of traditional Euclidean space
on data expression capabilities.

Building upon the aforementioned observations, we develop
our HypGCD using this hybrid structure. However, in contract
to the above mentioned methods, we establish connections
between the Euclidean and hyperbolic spaces by leveraging
pseudo labels and optimize them jointly. Furthermore, we
explore the local relationships among samples in a hierarchical
structure to acquire more detailed representations.

III. HYPERBOLIC HIERARCHICAL REPRESENTATION
LEARNING FOR GCD

A. Preliminary: Poincaré Ball Model

In order to enhance comprehension of our proposed method,
it is necessary to first introduce several definitions and oper-
ations in this section. Fig. 2 illustrates the characteristics and
basic operations on Poincaré ball.

Formally, the n-dimensional hyperbolic space, denoted as
Hn, is mathematically defined as a homogeneous space char-
acterized by a constant negative curvature. It is well known
that hyperbolic space cannot be isometrically embedded in
Euclidean space [47], [48]. However, there are several well-
established models of hyperbolic geometry. Consistent with
prior research [43], [49], we employ the Poincaré ball model
in our study.
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Fig. 2. (a) Comparison of Euclidean distance and hyperbolic distance.
(b) Visualization of the 2-D poincaré ball. Point z denotes the result of the
Mobius addition of points x and y. HycAvg stands for average operation in
hyperbolic space. Gray lines represent geodesics, demonstrating the shortest
length connecting two points.

The n-dimensional Poincaré ball model (Dn
c , g
D) is defined

by the manifold Dn
c = {x ∈ Rn : c||x|| < 1} and Riemannian

metric gD = λ2
cgE , where c is a curvature hyperparameter,

λc = (2/1 − c||x||2) is the conformal factor, and gE = In is
Euclidean matrix tensor. The process of mapping embeddings
from Euclidean space to the Poincaré ball is referred to as the
exponential map. The common form of the exponential map
exp0(x) is as follows:

exp0 (x) = tanh
�√

c||x||
� x
√

c||x||
. (1)

As hyperbolic spaces do not possess the properties of vector
spaces, a gyrovector formalism [50] is introduced to perform
operations such as addition. For any two vectors x, y ∈ Dn

c ,
their addition operation in gyrovector spaces, called Mobius
addition, is defined as

x ⊕c y :=

�
1 + 2c〈x, y〉+ c||y||2

�
x +

�
1 − c||x||2

�
y

1 + 2c〈x, y〉+ c2||x||2||y||2
. (2)

Based on the above definition, the geodesic distance between
the vectors x and y in the Poincaré ball is defined as follows:

dH (x, y) =
2
√

c
arctan

�√
c ||−x ⊕c y||

�
. (3)

It should be noted that when c→ 0, the dH(x, y) becomes the
Euclidean distance and we have

lim
c→0

dH (x, y) = 2 ||x − y||. (4)

Additionally, we need to introduce the average operation
in hyperbolic space. As we all know, this operation in the
Euclidean setting is represented as (x1, . . . , xN)→ (1/N)

P
i xi.

The extension of this operation in hyperbolic space is referred
to as the Einstein midpoint, which can be expressed in its
simplest form in Klein coordinates

HycAvg (x1, . . . , xN) =

PN
i=1 γixiPN

i=1 γi
(5)

where γi = 1/(1 − c||x||2)1/2 are the Lorentz factors, and xi

is sample in Klein coordinates. Here, to map the point from
Poincaré ball to the Klein coordinates, we denote xP and xK
as the coordinates of the same point in the Poincaré and Klein
models correspondingly, and the following transition formulas
hold:

xK =
2xP

1 + c||xP||2
, and xP =

xK
1 +

p
1 − c||xK||2

. (6)

B. Problem Formulation

Given the dataset D defined as D = DL ∪DU , where DU =

{(xi, yi) ∈ X ×YU} represents the unlabeled dataset and DL =

{(xi, yi) ∈ X × YL} represents the labeled dataset with only a
subset of categories labeled (i.e., YL ⊂ YU). The goal of GCD
is to categorize the unlabeled images in DU based on the prior
supervised information in DL. Following similar approaches in
existing studies [31], [51], we assume the number of labeled
categories |Cl| and unlabeled categories |Cu| are known. The
total number of categories is |C| = |Cu|.

C. Proposed Method

1) Overview: In order to effectively uncover the latent
hierarchical structure of representations, we have developed
a novel GCD framework called HypGCD. As illustrated in
Fig. 3, HypGCD integrates the information from separate
Euclidean space into hyperbolic space, facilitating hierarchical
representation learning of the data.

During the training stage, each sample in a mini-batch B is
associated with two augmented views. Given an input image
xi ∈ B, we extract its representations from the backbone as
fi = f (xi) ∈ F . We define the label predictions and features
as pi = h(fi) ∈ P and ei = g(fi) ∈ E , respectively, where h
and g represent the classifier and projector heads. Here, F ,
E , and P correspond to the Euclidean embedding, feature,
and label spaces, respectively. Finally, we map the features
ei to the hyperbolic space to obtain zi, and combine the
labels information from P to capture the latent hierarchical
structure among samples. The overall objective loss function
of HypGCD is

L = LEuc + Lhyp. (7)

Here, Leuc and Lhyp represent the basic losses from Euclidean
and hyperbolic spaces, respectively. Next, we will discuss
strategies for obtaining improved representations in both
spaces.
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Fig. 3. Overview of the proposed method. It can be observed that in Euclidean space, the distribution of features at class boundaries shows intersections and
errors. However, by mapping the features to hyperbolic space and learning a tree-like structure, the features belonging to different categories can be effectively
pushed apart from one another.

2) Euclidean Space Learning: Inspired by [32], represen-
tation learning in Euclidean space can be divided into feature
and label space learning. On one hand, contrastive learning
has gained significant attention and widespread application in
recent years, demonstrating promising performance [52], [53].
Accordingly, we employ self-supervised and supervised con-
trastive learning methods for feature space learning, depending
on whether the data are labeled or not. On the other hand, for
label space learning, we adopt a straightforward approach of
employing cross-entropy for labeled data and leveraging self-
distillation on all data to enhance feature stability. Next, we
will provide a concise introduction to the process of learning
representations in Euclidean space.

1) Feature Space Learning: Formally, given two random
augmentations of input x and x′, we jointly optimize a
supervised contrastive loss on labeled samples

Ls
f ea = −

1
|Bl|

X
i∈Bl

1
|Si|

X
q∈Si

log
exp

�
eT

i e′q/τs
�P

i∈B,i, j exp
�

eT
i e′j/τs

� (8)

and self-supervised contrastive loss on all samples, that is

Lu
f ea = −

1
|B|
X
i∈B

log
exp

�
eT

i e′i/τu
�P

i∈B,i, j exp
�

eT
i e′j/τu

� (9)

where τs and τu are temperature values, Si denotes a sample
set that shares the sample labels with xi, and Bl is a subset of
B consisting of all labeled data in mini-batch.

2) Label Space Learning: Depending the samples have
labels or not, we use cross entropy loss on labeled samples,
that is

Ls
cls =

1
2
�
l
�
yi,pi

�
+ l

�
yi,p

′
i

��
(10)

where l(a,b) = −〈a, log b〉, yi is one-hot label of xi. Similarly,
we use cross-entropy loss between predictions and pseudo-
labels on unlabeled samples

Lu
cls = l

�
pi,p′i

�
− εH (p̄) (11)

Fig. 4. Ideal local hierarchical structure of (21).

where ε is hyperparameter and H(·) is entropy regularization.
To this end, the overall loss in Euclidean space is

LEuc = λ
�
Ls

f ea + Ls
cls

�
+ (1 − λ)

�
Lu

f ea + Lu
cls

�
(12)

where λ is a trade-off parameter.
3) Hyperbolic Space Learning: In this section, we implic-

itly combine the Euclidean feature and label space together,
and map them to the Poincaré ball to learn more meaning-
ful hierarchical representations. In sum, our representation
learning can be divided into two folds, instance-class level
and instance-instance level. For the former, our purpose is to
encourage samples belonging to the same categories to be
closer to each other. To achieve this goal, we introduce a
hyperbolic category loss (HCL) that effectively pulls together
samples with same labels in the hyperbolic space. For the
latter, as shown in Fig. 4, even a group of samples also
have local hierarchical structures. Thus, we propose local
hierarchical loss. Next, we will provide a detailed discussion
of the two components mentioned above.

1) HCL: As above-mentioned that the Euclidean feature
space captures the distribution of all samples, while the
label space indicates the cluster assignment for each sample.
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Building upon the aforementioned generated representations,
we integrate them together and propose our HCL. Specifically,
we employ exponential mapping to obtain the hyperbolic
representation zi from ei according to (1). Motivated by [54],
[55], we then utilize the classification predictions from the
label space to push samples of the same category closer while
pulling samples from different categories apart. Formally, the
hyperbolic category loss can be expressed as

Lhcl = − log
exp

�
−dH

�
zi,µ j

�
/τ
�PC

j=1 exp
�
−dH

�
zi,µ j

�
/τ
� . (13)

Here, µ j represents the center of the jth class, and τ denotes
the temperature value. It is important to note that our HCL
is entirely based on the hyperbolic space, rather than the
Euclidean space. Contrary to previous works [54], we employ
(5) to compute all cluster centers as follows:

µ j = HycAvg
�
{zi}

ˇ̌
zi ∈ C j

�
(14)

where C j is jth category. The advantages of HCL are twofold.
1) By integrating information from both labels and the

feature space, we are able to jointly optimize features
and enhance consistency in feature distributions across
different spaces.

2) The properties of hyperbolic space allow for larger
boundary margins between classes. In contrast to
Euclidean space, even samples located on the class
boundary that belongs to different classes, they still
exhibit a large geodesic distance between each sample.

2) Local Hierarchical Loss: As mentioned earlier, samples
exhibit not only predefined categories but also local hierar-
chical structures. As illustrated in Fig. 1, even if the samples
belong to the category Lang., they can be further subdivided
into programming languages and compiled languages. To
extract meaningful information and discover new categories,
it is necessary to construct a local hierarchical structure of the
samples.

Formally, given an anchor sample xi and its positive pair x j

and negative pair xk, their representations in hyperbolic space
can be obtained as zi, z j, and zk using (1). Our objective is
making zi and z j to be close to their common parent node
while being far away from the negative one. The ideal local
hierarchical structure is illustrated in Fig. 4.

Nevertheless, constructing a triplet {xi, x j, xk} solely based
on pairwise distances is unreasonable [56]. To address this
issue, we employ K-reciprocal nearest neighbors to generate
a set of triplets. Specifically, let us denote the set of triplets
as T , which is sampled as

T =
˚�

zi, z j, zk
� ˇ̌ �

z j ∈ R′K (zi)
�
∩
�
zk < R′K (zi)

�	
(15)

where R′K considers the both K-reciprocal nearest and semi-
supervised information. DenoteRK(z) = {z′

ˇ̌
(z′ ∈ NK(z))∩(z ∈

NK(z′))} as the K-reciprocal nearest neighbors of z and NK(z)
is the K-nearest neighbors of z, we could use following manner
to obtain R′K :

R′K (z) =
˚
RK (z) ∪ z′

	
∀z′ ∈ S (16)

where S denotes the sample set that shares the same label with
z. It should be note that all representations are in hyperbolic
space, the distances between each other should obey the (3).

After obtaining triplets T , in a mini-batch, the probability
that samples z is nearest common father note of zi and z j is

πi j (z) = exp
�
−max

˚
dH (zi, z) , dH

�
z j, z

�	�
. (17)

Then, we introduce Gumbel-max trick to sample zi j as com-
mon father note

zi j = max
z

�
πi j (z) + gi j

�
. (18)

Here, gi j represents an i.i.d. sample drawn from the Gumbel-
softmax distribution, preventing samples from falling into local
sub-optima. Additionally, it is necessary to sample the com-
mon father node of the entire triplet. Similarly, the probability
that samples z is nearest common father note of triple is given
by

πi jk (z) = exp
�
−max

˚
dH (zi, z) , dH

�
z j, z

�
, dH (zk, z)

	�
(19)

and we sample zi jk
1 as common father note of entire triplet as

follows:
zi jk = max

z

�
πi jk (z) + gi j

�
. (20)

Inspired by Dasgupta cost [57], we utilize triplet loss in
hyperbolic space to conduct local hierarchical structure

Llhl =
�
dH
�
zi, zi j

�
− dH

�
zi, zi jk

�
+ δ

�
+

+
�
dH
�
z j, zi j

�
− dH

�
z j, zi jk

�
+ δ

�
+

+
�
dH
�
zk, zi jk

�
− dH

�
zk, zi j

�
+ δ

�
+

(21)

where δ is margin hyperparameters. To this end, the overall
loss in hyperbolic space can be summarized as

Lhyp = αLhcl + βLlhl (22)

where α and β is trade-off hyperparameter and will be dis-
cussed in Section IV-E. Additionally, Algorithm 1 presents
the PyTorch-like pseudo-code for our HypGCD.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We demonstrate the effectiveness of our
HypGCD on six widely used datasets: CIFAR-10, CIFAR-100
[58], and ImageNet-1K, which are generic image classification
datasets, as well as three challenging fine-grained image
classification datasets, including CUB [59], Stanford Cars [60],
and FGVC-Aircraft [61]. Each dataset is divided into labeled
and unlabeled subsets. Following the [14], we select 80% of
the categories as labeled categories Yl in CIFAR-100, and half
of the categories as labeled categories for the other datasets.
We construct the labeled set Dl by selecting half of the samples
from these labeled class subsets. And the remaining samples
constitute the unlabeled dataset Du. Detailed statistics and
dataset separation are summarized in Table I.

1zi j and zi jk represent samples, and the subscripts i, j, k emphasize their
relationship with zi, z j, and zk .
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Algorithm 1 Pseudo Code for HypGCD
# f, g, h: backbone, projector and classifier
# x, Y l: input images, known labels
# tau, lamb, alpha, beta: Hyperparameters

for epoch in range(max epoch):
# training step
for x, uq idxs in loader:
# random augmentations
x1 = aug(x); x2 = aug(x)

e1 = g(f(x1)); e2 = g(f(x2)) # projector
p = h(f(x1)); q = h(f(x2)) # classifier

# 1. Euclidean space learning
# 1.1 Feature space learning
fea s = supcon(e1, e2, Y l)# supervised
contrastive
fea u = un-supcon(e1, e2)# unsupervised
contrastive

fea loss = lamb*fea s + (1)-lamb)*fea u

# 1.2 Label space learning
sup1 = CrossEntropy(p, Y l)# supervised loss
sup2 = CrossEntropy(q, Y l)

label s = 0.5*(sup1 + sup2)
label u = CrossEntropy(p/tau, q)# un-supervised
loss

label loss = lamb*label s + (1)-lamb)*label u

# 1.3 Euclidean space loss
euc loss = fea loss + label loss

# 2. Hyperbolic space learning
z1, z2 = expmap(e1), expmap(e2) # exponential
mapping

# 2.1 Hyperbolic category loss
c1, c2 = argmax(z1), argmax(z2) # pseudo labels
mu1 = HycAvg(z1, c1) # compute centers from Eq.
(14)
mu2 = HycAvg(z2, c2)

hcl1 = L hcl(z1, mu1) # compute hcl loss
hcl2 = L hcl(z2, mu2)

hcl loss = 0.5*(hcl1 + hcl2)

# 2.2 Local hierarchical loss
lhl loss = L lhl(z1, z2)# From Eq. (13) to Eq.
(20)

# 3. Overall loss
loss = euc loss + alpha*hcl loss +
beta*lhl loss

# 4. Training model
loss.backward()

2) Comparison Methods: We evaluate our method by com-
paring it against multiple baselines and SOTA methods. As
discussed in Section II, the methods can be categorized into
two groups. We leverage RS+ [62], UNO+ [11], ORCA [63],
GCA [64], AMEND [65], and PIM [31] as one-stage methods,
and also use four two-stage methods including k-means, GCD
[14], DCCL [17] and GPC [66].

3) Evaluation Protocol: We follow the evaluation protocol
presented in GCD [14], and compute accuracy using the
Hungarian algorithm to compare the ground-truth labels with
the model’s cluster assignments. The algorithm is defined as

TABLE I
STATISTICS AND SEPARATION OF DATASETS FOR GCD

follows:

ACC =
1
N

NX
i=1

1 (ŷ = map (y)) (23)

where N represents the data scale, and map(·) refers to the
optimal Hungarian algorithm. Subsequently, we estimate the
accuracy for all classes (All), known classes (Old), and novel
classes (New).

4) Implementation Details: Consistent with previous stud-
ies [14], [17], [32], we utilize the ViT-B-16 model pretrained
by DINO [67] as the backbone. The feature representation for
each input image is obtained by utilizing the 768-D output of
the [CLS] token. For all datasets, we only fine-tune the last
transformer block in backbone. During the training stage, the
model is presented with two views of each input image, each
having random augmentations. Mini-batches are constructed
by evaluating the output of the projector and selecting the near-
est neighbors. Each mini-batch is composed of 125 images,
consisting of 25 samples and their corresponding four nearest
neighbors. The network is trained for 200 epochs on each
dataset using a cosine decay schedule and an initial learning
rate of 0.1.

To ensure a fair comparison, we set the trade-off factor λ to
0.35. For Euclidean space learning, we assign the temperature
parameters τu and τs as 1.0 and 0.07, respectively. In the
case of hyperbolic space learning, we experimentally maintain
a consistent set of hyperparameters: τ in Lhcl is set to be
0.1, the curvature is set to c = 0.1, the number of nearest
neighbors in (15) is K = 20, and the margin in (21) δ is set to
be 0.1. We also provide additional discussion regarding other
hyperparameters, such as α and β, K, and δ. All experiments
are conducted using an NVIDIA GeForce RTX 3090 GPU.

B. Qualitative Analysis

In this section, we use two visualized experiments to demon-
strate the effectiveness of HypGCD intuitively.

1) Visualization of Embeddings in Poincaré Ball: In order
to demonstrate that HypGCD effectively represents a latent
semantic hierarchy of samples, we visualize the learned
embedding vectors by projecting them onto a 2-D Poincaré
ball. For visualization purposes, we employ UMAP [68] with
the hyperbolic distance metric as a dimensional reduction
technique.

At the beginning of training (Fig. 5 left), the samples
exhibit a random distribution on the Poincaré ball, suggesting
the presence of noise in distribution. The middle of Fig. 5
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Fig. 5. Poincaré ball visualization of embeddings on Stanford cars. Different colors indicate different classes.

Fig. 6. Illustration of batch-wise nearest neighbors obtained from the well-trained model on FGVC-aircraft. Blue boundary represents the query image, while
green and red boundaries indicate images that share the same and different labels corresponding the query, respectively. We simply utilize the cosine similarity
to measure the relationship between two images.

presents the distribution of features at 30 epochs. It is apparent
that the features progressively distribute toward the bound-
ary of the Poincaré ball, indicating a structured pattern that
enhances clustering and classification tasks. However, it is
noticeable that the feature distribution is still not uniformity.
One possible reason is that the model tends to predict fea-
tures toward old classes, which degrades the quality of the
feature distribution. A more detailed analysis of this issue will
be conducted in subsequent sections. Conversely, following
training, a well-trained model will result in the majority of
samples converging near the boundary of the Poincaré ball. In
contrast to Euclidean space, in the Poincaré boundary, even for
two closely located points in Fig. 5, their geodesic distance is
noticeably large. Furthermore, it is apparent that some samples
are closer to the center of the Poincaré ball. Actually, these
samples, along with those located on the boundary, form a
local tree-like structures. Consequently, we can deduce that
HypGCD efficiently captures intricate semantic hierarchical

structures within the samples, improving representation learn-
ing and enhancing the model’s performance to discover novel
categories.

2) Nearest-Neighbors Visualization: Fig. 6 illustrates the
batch-wise nearest neighbors obtained from the well-trained
model on FGVC-aircraft. Evidently, samples belonging to the
same class demonstrate high cosine similarities, predominantly
surpassing 0.95. Conversely, for distinct classes, there is a sub-
stantial decline in cosine similarity. For example, the top three
nearest neighbors of the A380 class exhibit a cosine similarity
of 0.988, whereas the fourth nearest neighbor demonstrates a
cosine similarity of only 0.8605. On the other hand, without
prior knowledge, distinguishing the subtle differences between
fine-grained aircraft poses a challenge for visual inspection.
Our proposed model effectively discriminates the feature dis-
tribution, thereby improving its capability to identify new
categories.
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TABLE II
COMPARISON RESULTS (%) WITH SOTA METHODS. THE BEST RESULTS ARE BOLD. †DENOTES TWO-STAGE METHOD

C. Comparison With SOTA

In this section, we compare the proposed HycGCD with ten
SOTA GCD algorithms. These include six one-stage methods
(RS+ [62], UNO+ [11], ORCA [63], PIM [31], GCA [64], and
AMEND [65]), and four two-stage methods (GCD [14], DCCL
[17], and GPC [66]). Additionally, k-means is employed as the
reference baseline method. Table II provides a summary of the
experimental results on five benchmark datasets, with the best
results highlighted in bold.

According to the results presented in Table II, we can draw
the following conclusions.

1) From the perspective of methods types, we observe that
one-stage methods demonstrate superior performance
on the old class, whereas two-stage methods exhibit
a greater propensity for discovering new classes. One
of the main reasons is the one-stage methods contain
parametric classifier, where label information directly
impose on it through cross-entropy loss. Consequently,
it makes the classifier to favorably predict the old
classes, without considering their accuracy. In contrast,
two-stage methods commonly employ self-supervised
and supervised learning in the first stage to acquire
cluster-favorable features. Subsequently, in the second
step, nonparametric classifiers (e.g., semi-supervised
k-means, DBSCAN) are employed to derive cluster-
ing outcomes. Notably, these nonparametric classifiers
solely concentrate on feature distributions and do not
possess any prior assumptions or bias to new or old
classes. Consequently, they can assign a greater number
of samples to new classes. Further discussion on this
phenomenon will be provided in Section IV-F.

2) HypGCD clearly outperforms other comparative meth-
ods, particularly on fine-grained datasets, where it
achieves the best performance. On generic datasets, such
as CIFAR-10/100, HypGCD still shows the competitive
performance. We believe that that these three datasets
encompass a substantial amount of labeled data and a
considerable proportion of labeled categories. In this
context, conventional self-supervised learning suffices
for acquiring meaningful representations in Euclidean
space. For the remaining three fine-grained datasets,
both data scale and small amount of labeled data

significantly amplify the challenge of predicting new
classes. However, HypGCD still captures intricate hier-
archical relationships between samples and categories
in hyperbolic space without distortion. It strengthens
representation learning and the ability for discovering
new categories. Moreover, HypGCD implicitly inte-
grates information from both the feature space and the
label space in Euclidean space, thereby ensuring the
consistency of sample distributions in both domains.

3) As for large-scale dataset ImageNet-1k, HypGCD
still achieves competitive results. For the performance
on“New” categories, it is still 0.9% and 1.6% higher
than AMEND and PIM, respectively. In general, GCD,
DCCL, AMEND, PIM and HypGCD all use the same
backbone structures and training strategy. Therefore,
they obtain similar high-dimensional embeddings at the
early training stage, leading the similar performance on
different datasets. However, AMEND and PIM, which
are more similar to HypGCD, perform slightly worse
than our proposed method. The reason is that due to
the large number of samples in ImageNet-1k, AMEND
will inevitably introduce noise in the neighbor con-
siderations, pulls neighbors that do not belong to the
same class together, resulting in a decrease in “New”
categories. On the other hand, in the task of clustering
with too many categories, the loss of PIM is a little
bit weak, and the performance also depends on the
initialization (semi-supervised k-means++) of the cluster
center.

D. Ablation Analysis

In this section, we conduct ablation analysis on CUB, Stan-
ford Cars, CIFAR-100, and ImageNet-1K, aiming to showcase
the effectiveness of HypGCD. Table III provides validation for
the crucial components of HypGCD and showcases their per-
formance. Throughout all ablation experiments, the baseline
model solely employs Leuc as its objective function.

1) Effectiveness of Hyperbolic Categories Loss: Following
the integration of Lhcl into the baseline, a notable enhancement
in the model’s performance on the old class is observed,
with respective increases of 3.4% and 3.7% on the CUB and
cars datasets. The improvement on the new class on these
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TABLE III
ABLATION STUDY ON THE DIFFERENT COMPONENTS OF HYPGCD (%)

two datasets are limited, exhibiting increases of merely 0.5%
and 1.4%, respectively. However, there are 6.1% and 2.0%
improvements on generic datasets (CIFAR-100 and ImageNet-
1K). As mentioned earlier, the label information applied to
the parametric classifier is more effective in improving the
performance on the old class.

2) Effectiveness of Local Hierarchical Loss: Observing the
baseline and the third row in Table III, it becomes evident that
the incorporation of Lhcl yields notable performance enhance-
ments in both the old and new categories. Specifically, we
observe increases of 1.4%, 3.1%, and 6.4% on the new class in
CUB, Stanford cars, and CIFAR-100, respectively. It directly
illustrates the effectiveness of constructing local hierarchical
structures. In other words, the local hierarchical structure
better reflects the subtle semantic relationships among samples
in fine-grained datasets. Therefore, it could better leads the
model to learn more meaningful representations and improves
the ability to discover new classes. However, the effect of Lhcl

on ImageNet-1K is not very pronounced. One possible reason
is that the large scale makes the local hierarchical structure
less apparent.

3) Effectiveness of Hyperbolic Representation Learning:
The last row of Table III demonstrates the effectiveness
of hyperbolic space representation learning. HypGCD con-
sistently outperforms the baseline, exhibiting significant
improvements, especially in the case of Stanford cars, where
it achieves increases of 3.0% and 4.2% on the old and new
classes, respectively. On one hand, HypGCD integrates infor-
mation from both the feature and label spaces in Euclidean
space, enabling the acquisition of features that encompass
richer semantic information at both the instance–instance and
instance-class levels. On the other hand, due to the intrinsic
properties of hyperbolic space, it can faithfully depict the
hierarchical relationships among samples. Directly expressing
these hierarchical relationships in traditional Euclidean space
is infeasible, which shows the superiority of our proposed
method by mapping features into hyperbolic space. As for
CIFAR-100, we can observe a slight decrease in performance
on the old class, but a significant improvement on the New
class. We could tolerate this slight performance degrades,
especially aiming to discover novel categories.

E. Impact of Hyperparameters

In this part, we explore the impact of hyperparameters in
HypGCD, including trade-off hyperparameters α and β in (22),
number of nearest-neighbor K in (15) and margin δ in (21).

1) Impact of Trade-Off Hyperparameters: In this test,
we vary the values of α and β within the ranges Sα =

Fig. 7. Impact of trade-off hyperparameters on all, old, and new categories.

{0.1, 1.0, 10.0} and Sβ = {1.0, 5.0, 10.0}, respectively. As shown
in Fig. 7, too large value of α could degrade the performance.
One possible reason is that larger α will introduces noise from
pseudo-labels. Since these pseudo-labels heavily rely on the
classifier’s output and introduce wrong predictions, reducing
the quality of instance-class level representations. As for β, A
larger β allows the model to achieve better results, indicating
that Llhl can effectively extract local hierarchical information.
However, on CUB, we could see that a larger β leads to a
decrease on old classes but an improve on new classes in
performance. This phenomena aligns with our expectations,
since Llhl can extract more fine-grained features, enhancing
the ability to discover new classes. In other words, under
reasonable hyperparameter settings, our proposed strategy of
hyperbolic space hierarchical representation is effective in the
problem of discovering new classes.

2) Impact of nearest-neighbor K in (15): The selection of
the common father node in the local hierarchical structure
is directly determined by the number of nearest neighbors,
denoted as K in (15). As shown in Fig. 8, we define the range
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Fig. 8. Impact of nearest-neighbor K on all categories.

of nearest neighbors as SK = {10, 20, 30, 40} to observe its
impact on performance. On one hand, a decrease in perfor-
mance is observed when K = 10. One possible reason for this
decrease is that a small number of nearest neighbors disregards
the reciprocal relationships among samples, thereby distorting
the construction of the local hierarchical structure. On the
other hand, a larger number of K also leads to performance
degradation. Since it includes too many redundant samples,
resulting in the consideration of false-positive samples that do
not belong to the same class.

3) Impact of margin δ in (21): The local hierarchical loss
involves another margin parameter, denoted as δ, which also
requires consideration. As shown in Fig. 9, we define the range
of margin as Sδ = {0.05, 0.10, 0.15, 0.20}, to observe its impact
on performance. The value of it determines the compactness
of the local structure tree. A larger value of δ indicates a more
blurred local hierarchical structure, whereas a smaller value of
δ results in a clearer one. Overall, it is observed that HypGCD
achieves good results at δ = 0.10 and δ = 0.15. This obser-
vation is intuitive. When δ is too small, HypGCD excessively
emphasizes the local hierarchical structure, diminishing the
generalization representation and detrimentally impacting
the method performance. Conversely, when δ is too large,
the local structure constructed by HypGCD becomes blurred,
decreasing the discriminate of fine-grained features and con-
sequently hurting the model’s performance. In summary, for
all experiments, we set δ to 0.1 to achieve the optimal results.

F. In Depth Analysis

1) Analysis on Euclidean Space and Hyperbolic Space:
This section primarily focuses on analyzing the influence of
the hyperbolic space itself on the performance. Specifically,
while keeping other experimental settings unchanged, we set

Fig. 9. Impact of margin δ on all categories.

Fig. 10. Comparison result between Euclidean space and hyperbolic space.

the curvature of the hyperbolic space to 0, implying that
all computations are conducted in Euclidean space according
to (4). Fig. 10 illustrates the performance comparison in
two distinct spaces. It could be clearly observed that the
performance based on hyperbolic space is consistently better
than Euclidean space across all datasets. This phenomenon can
be attributed to two primary factors as follows.

1) At the instance-instance level, hyperbolic space can bet-
ter captures hierarchical relationships among samples in
triplets, learning more fine-grained features. In contrast,
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Fig. 11. Bias of prediction errors on three fine-grained datasets.

Euclidean space introduces unnecessary semantic noise.
This improvement is reasoned by the intrinsic negative
curvature of hyperbolic space.

2) Based on the clear local tree structure, the computation
of cluster centers in hyperbolic space achieves greater
accuracy at the instance-class level. Due to the presence
of negative curvature, it incorporates the hierarchical
information of samples into the computation, instead of
distanced-based averaging only.

To this end, hyperbolic space could discover the latent seman-
tic hierarchy of training data, and deploy the hierarchy to
provide richer and more fine-grained representations than
Euclidean space.

2) Analysis on Prediction Bias: In this section, we explore
deeper into the discussion of HypGCD’s ability to discover
new classes, specifically focusing on the bias in classifier
predictions. To achieve these goal, we divide the prediction
errors into four categories: Old–Old, Old–New, New–Old, and
New–New. For example, Old–New indicates that the sample’s
true label is old, but it is incorrectly assigned to another
new class. And New–New denotes that the samples from new
categories are wrongly assigned to another new categories.

Fig. 11 presents a summary of the error type propor-
tions across the CUB, Stanford cars, and FGVC-aircraft.
We can clearly see that the classifier’s primary errors stem
from predicting new classes, constituting over 75% of the
total errors in average. Since during the model’s training
process, there always absent the supervised information of
new classes. Solely depending on self-supervised and self-
distillation, learning limits the ability to discover new classes.
Additionally, we observe that New–Old account for 25.9%,
31.4%, and 25.2% of the errors through the three datasets,
respectively. This suggests that the classifier has a tendency
to incorrectly predict unknown classes as known classes,
consequently enhancing the performance on the old classes,
no matter the sample truly belongs to a new or old class. We
believe that during the training process, the label information
shows a direct influence on the classifier via cross-entropy
loss, leading the classifier more sensitive to the old classes.
Conversely, there is insufficient strong supervision to guide the
classifier’s performance on new classes, restricting its capacity
to discover new classes.

3) Robustness of HypGCD: Here, we have extended the
GCD to noise labels scenarios. For simplicity, we refer to this
task as Noisy GCD (NGCD) in this context. To ensure fairness
in NGCD, we keep the settings for new class partitioning and
hyperparameters consistent with HypGCD. The only differ-

Fig. 12. Complete performance of HypGCD on four datasets.

ence is that we introduce some noise into the ground truth
labels.

Table IV summarizes the performance of HypGCD on four
datasets with different noise ratios. It can be observed that
as the noise ratio increases, the performance significantly
decreases, which aligns with expectations. Furthermore, we
can see that on three fine-grained datasets, the performances
greatly decrease for old classes compared to new one. We
believe there are two reasons for this phenomena. First, noisy
supervised information directly degrades the classifier and
distorts accuracy. Second, even we will leverage noisy labels
to calculate Lhcl, Llhl still constructs local tree-like structures.
This indicates that our model exhibits robustness to noise.
It is worth noting that the performance on CIFAR-100 is
quite challenging. It demonstrates the strong noise resistance
capability of HypGCD when dealing with generic image
datasets. In sum, although HypGCD is designed for the GCD
task, it can be extended to other tasks, which is one of our
future works.

4) Complete Performance of HypGCD: Fig. 12 illustrates
the performance of our model throughout the training pro-
cess, along with the corresponding values of the objective
functions. We can see that the model’s performance stabilizes
after 60 epochs when Lhyp is not incorporated. Notably, the
introduction of Lhyp results in a short decreasing in the perfor-
mance. Nonetheless, the overall performance of the HypGCD
eventually achieving optimal performance. One possible rea-
son is that Lhyp disrupts the stable feature distribution in
the original Euclidean space. It considers the tree-like dis-
tribution of features in the hyperbolic space both on the
instance–instance and instance-class levels, which could better
capture the fine-grained semantic features. Finally, when the
feature distribution stabilizes in hyperbolic space, HypGCD
achieves the optimal results.
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TABLE IV

RESULTS (%) ON FOUR DATASETS OF VARIOUS NOISY LABEL RATIOS

V. CONCLUSION

This article introduces HypGCD, a novel representation
learning method for GCD. HypGCD effectively explores the
hierarchical tree-like relationships among samples in hyper-
bolic space at both the instance-class and instance–instance
levels. Furthermore, we validate the effectiveness of HypGCD
through extensive experiments, demonstrating its superior per-
formance compared to SOTA methods on five widely used
datasets. In the future, our aims are expanding HypGCD to
address more challenging scenarios, including situations where
the number of new categories are unknown and dealing with
noisy labels in GCD, among others.
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